Смекни!
smekni.com

Термодинамические потенциалы (стр. 5 из 5)

(3.58)

Здесь

- парциальное давление i-го компонента, причем:

С учетом (3.58) условие равновесия трехкомпонентной системы (3.57) примет вид:

(3.59)

Для дальнейшего анализа воспользуемся уравнением состояния идеального газа, которое запишем в виде:

(3.60)

Здесь через

, как и ранее, обозначается термодинамическая температура
. Тогда известная из школы запись
принимает вид:
, что и записано в (3.60).

Тогда для каждого компонента смеси получим:

(3.61)

Определим вид выражения химического потенциала идеального газа. Как следует из (2.22), химический потенциал имеет вид:

(3.62)

Учитывая уравнение (3.60), которое можно записать в виде

, задача определения химического потенциала сводится к определению удельной энтропии и удельной внутренней энергии.

Система уравнений для удельной энтропии следует из термодинамических тождеств (3.8) и выражения теплоемкости (3.12):

Учитывая уравнение состояния (3.60) и переходя к удельным характеристикам, имеем:

(3.63)

Решение (3.63) имеет вид:

Система уравнений для удельной внутренней энергии идеального газа следует из (2.23):

Решение этой системы запишется в виде:

Подставляя (3.64) - (3.65) в (3.66) и учитывая уравнение состояния идеального газа, получаем:

(3.66)

Для смеси идеальных газов выражение (3.66) принимает вид:

Подставляя (3.67) в (3.59), получаем:

Выполняя преобразования, запишем:

Выполняя потенцирование в последнем выражении, имеем:

(3.68)

Соотношение (3.68) получило название закона действующих масс. Величина

является функцией только температуры и получила название компоненты химической реакции.

Таким образом химическое равновесие и направление химической реакции определяется величиной давления и температуры.