Если разрешенная зона заполнена не полностью, то электроны могут ускоряться и переходить под действием электрического поля на свободные уровни в пределах одной зоны. Такой материал — типичный металл. Металлическая проводимость образуется и при перекрытии заполненной энергетической зоны с незаполненной зоной.
Расчет эффективных масс плотности состояний для электронов и дырок.
Зона проводимости кремния представляет собой наложение трех ветвей E(k), одна из которых лежит значительно ниже других. Положение абсолютного минимума определяет дно зоны проводимости (Рис.3). Он лежит в направлении [100], поэтому всего имеется 6 эквивалентных минимумов энергии или 6 долин.
Рис.3.Зонная структура кремния.
Изоэнергетические поверхности около абсолютных минимумов представляют собой эллипсоиды вращения относительно большой полуоси, которая совпадает с направлением [100] (Рис.4)
Рис.4. Поверхности равной энергии в зоне проводимости кремния.
Зависимость энергии от к можно представить в виде
.Опыты по циклотронному резонансу дают для компонентов тензора эффективной массы электрона в кремнии следующие значения: m1=m2=0,19m0; m3=0,98m0.
В соответствии с тем, что имеется 6 эллипсоидов равной энергии, плотность состояний, которая выражается для одного эллипсоида равенством
,увеличится в 6 раз. Если учесть, что для кремния m1=m2, то
,а эффективная масса плотности состояний для электронов с учетом значений m1=0,19m0 и m3=0,98m0 будет:
. (1)Следовательно, у кремния все 6 эллипсоидов изоэнергетической поверхности зоны проводимости можно заменить одной сферической поверхностью с эффективной массой плотности состояний для электронов, равной 1,08m0.
Для валентной зоны максимум энергии находится в центре зоны Бриллюэна к=0 для всех трех полос, при этом в этой точке все три зоны смыкаются, так что энергия в центре зоны Бриллюэна оказывается вырожденной(Рис.5).
Рис.5. Поверхности равной энергии в валентной зоне кремния.
Учет спин-орбитального взаимодействия (тонкой структуры уровней) приводит к тому, что вырождение частично снимается. Связь между энергией и волновым вектором задается формулой:
, ,где
и - энергии, которые соответствуют тяжелым и легким дыркам соответственно, а - отщепленным дыркам, скалярные эффективные массы которых можно посчитать по формулам: , . - безразмерные константы.Опыт дает mT*=0,49m0, mЛ*=0,16m0.
Плотность состояний будет определяться суммой плотности состояний в зонах тяжелых и легких дырок:
.Изоэнергетические поверхности обеих зон можно заменить одной приведенной сферой с плотностью состояний
,для которой эффективная масса плотности состояний для дырок равна:
. (2)Расчет уровня Ферми и концентрации носителей заряда в примесном полупроводнике.
Рассмотрим полупроводник, в который введена примесь одного вида, например, донорная. Уравнение нейтральности для такого полупроводника принимает вид
.Для перевода электрона из валентной зоны в зону проводимости необходима энергия, равная ширине запрещенной зоны, в то время как для перевода электрона с уровня примеси в зону проводимости необходима энергия, равная энергии ионизации примеси, которая много меньше ширины запрещенной зоны. Поэтому при низкой температуре основную роль будут играть переходы электронов с примесного уровня, следовательно p<<ND+. Неравенство сохранится до тех пор, пока вся примесь не будет ионизована. Однако с ростом температуры произойдет ионизация примеси, и рост концентрации электронов n будет происходить вместе с ростом концентрации дырок p. При больших температурах p>>ND+=ND, и полупроводник станет собственным.
Область низких температур.
, или n=pD.Решая уравнение, получим
.Из этих соотношений можно найти уровень Ферми:
.Выражение для концентрации электронов будет иметь вид
.С ростом температуры
стремится к единице, Nc возрастает и может стать больше ND, однако при достаточно малых температурах может быть выполнено неравенство ,и выражение для положения уровня Ферми записывается в виде:
.При T=0
,т.е. уровень Ферми лежит посередине между дном зоны проводимости и примесным уровнем. При повышении температуры уровень Ферми повышается, проходит через максимум, а затем опускается.
При 2NC=ND уровень Ферми снова находится в середине между ECи ED.
Концентрация электронов
.Рассмотрим противоположный случай:
,тогда для уровня Ферми будет справедливым выражение:
.С ростом температуры уровень Ферми опускается. Концентрация электронов для этого случая: n=ND, т.е. концентрация электронов не зависит от температуры и равна концентрации примеси. Эта область температур носит название области истощения примеси. Переход от области примесной проводимости к области истощения происходит при температуре насыщения Ts. Ts — температура, при которой F=ED, ее можно определить из условия
.Отсюда
.Область высоких температур.
С ростом температуры концентрация дырок возрастает и может стать сравнимой с концентрацией электронов, тогда уравнение электронейтральности будет иметь вид:
.Решая это уравнение, получим
.Учитывая связь между n и F и предыдущую формулу, то можно записать выражение для уровня Ферми в области высоких температур:
.По мере приближения уровня Ферми к середине запрещенной зоны концентрация дырок возрастает при практически неизменной концентрации электронов. При дальнейшем росте концентрации дырок будет происходить и рост концентрации электронов, достигается равенство n=p, и полупроводник из примесного превращается в собственный. Температура, при которой происходит этот переход, называется температурой истощения примеси.
Условием перехода будет выступать равенство p=ND или n=2ND, откуда можно найти эту граничную температуру:
,или
.Концентрация, при которой наступает полное вырождение полупроводника (
), находится из соотношения: