и будет равна
.Вывод формул для дырочного полупроводника аналогичен выводу для электронного.
Основные формулы для дырочного полупроводника:
Зависимость концентрации дырок от температуры в области низких температур:
Зависимость уровня Ферми от температуры в области низких температур:
Зависимость концентрации дырок от температуры в области высоких температур:
Зависимость уровня Ферми от температуры в области высоких температур:
Температура насыщения примеси:
Температура истощения примеси:
Концентрация акцепторов, при которой наступает полное вырождение:
.Расчет времени жизни носителей заряда.
Реальные полупроводниковые материалы содержат обычно примеси нескольких типов, каждая из которых может создавать один или несколько уровней в запрещенной зоне полупроводника. Дефекты решетки, обычно нейтральные в состоянии термодинамического равновесия и способные захватывать подвижные носители заряда одного знака и освобождать их, называются ловушками захвата. Ограничимся рассмотрением случая, когда в полупроводнике имеется один тип ловушек, создающий энергетический уровень.
Время жизни носителей заряда определяется формулой
.В случае малого уровня возбуждения, когда
, время жизни неравновесных носителей заряда имеет вид: , , ,где Sp и Sn – сечения захвата электронов и дырок,
Nt – концентрация рекомбинационных центров,
VT – тепловая скорость.
Расчет s(T). Формулы для подвижности.
Удельная электропроводность примесных полупроводников определяется по формуле s=qnmnдля донорного и по формуле s=qpmpдля акцепторнрго полупроводника. Для вычисления s(T)необходимо найти температурную зависимость подвижности.
Кремний является неполярным полупроводником. Для него существуют два основных механизма рассеяния, которые существенно влияют на подвижность, а именно рассеяние на акустических фононах и на ионизированных примесях.
При низких температурах, когда число фононов в кристалле сильно уменьшено охлаждением, подвижность определяется рассеянием на ионизованных примесных центрах.
Каждый ионизованный центр в кристалле представляет собой неподвижный отрицательный или положительный заряд, который может отклонить траекторию пролетающего электрона.
Подвижность, связанная с рассеянием на ионах примеси, описывается формулой Бруккса-Херринга:
,где NI – концентрация ионов примеси, n – концентрация электронов проводимости.
При высоких температурах в Si электроны рассеиваются преимущественно продольными акустическими фононами.
При возникновении продольных акустических колебаний происходит смещение центра тяжести элементарной ячейки и происходит упругая деформация кристаллической решетки, которая приводит к изменению положения краев зоны проводимости и валентной зоны, что адекватно возникновению на пути движения носителей заряда потонциального барьера и рассеянию на нем носителей заряда.
Подвижность, связанная с рассеянием на акустических фононах описывается формулой Бардина-Шокли:
,где D-плотность; V-скорость звука; E1 – акустический потенциал деформации.
После подстановки коэффициентов получаем для кремния:
, см2/В*с.Результирующая подвижность
.Расчет зависимости RH(T).
Рассмотрим образец для Холловских измерений (Рис.6).
Рис.6. Схема Холловских измерений.
Внешнее поле Ex приложено вдоль оси x. Перпендикулярно ему (вдоль оси z) направлено магнитное поле Bz, а с верхнего и нижнего контактов снимается так называемое холловское напряжение VH.Для определенности будем считать образец дырочным (p-типа). Сила Лоренца qvx*B2 отклоняет дырки к нижней поверхности образца, где они частично накапливаются, что приводит к возникновению вертикального электрического поля Eу — холловского поля, которое компенсирует действие силы Лоренца на дырки и обеспечивает равенство нулю вертикального тока Jу. Холловское поле пропорционально плотности продольного тока Jx и напряженности магнитного поля Bz. Его величину находят, измеряя холловское напряжение VH: Ey=Vy/W=RHJxBz,
где RH—коэффициент Холла, определяемый выражениями
, .Параметр t — среднее время свободного пробега носителей. Его величина зависит от энергии носителей E. В частности, в полупроводниках со сферическими изоэнергетическими поверхностями
при рассеянии на фононах и при рассеянии на ионизированных примесях. В общем случае можно считать что , где а и s— постоянные.Для рассмотренных механизмов рассеяниякоэффициент r оказывается равным 3p/8 =1,18 при рассеянии на фононах и 315p/512 = 1,93 при рассеянии на ионизированных примесях.
Холловская подвижность mH определяется как произведение коэффициента Холла на проводимость:
.Ее следует отличать от дрейфовой подвижности mn(или mp). Для полупроводников с ярко выраженным типом пооводимости(n>>pили р >> п) получаем
и .Следовательно, в этих случаях из холловскнх измерений можно непосредственно определить и тип проводимости (электроны или дырки), и концентрацию носителей.
При построении температурной зависимости коэффициента Холла
необходимо учитывать температурную зависимость концентрации носителей заряда от температуры и различные механизмы рассеяния в области низких и высоких температур, определяющие холл-фактор AH.
Список литературы:
1. Дж. Займан Электроны и фононы – изд-во иностранной литературы, 1962г.
2. Киреев П.С. Физика полупроводников – М.: Высшая школа, 1975г.
3. Шалимова К.В. Физика полупроводников – М.: Энергия, 1976г.
4. Горбачев В.В., Спицына Л.Г. Физика полупроводников и металлов – М.:Металлургия, 1982г.
5. Блейкмор Дж. Физика твердого тела. – М.:Мир, 1988.
6. Мартынов В.Н. Лекции по физике твердого тела за V семестр.