Смекни!
smekni.com

Печь с шагающими балками (стр. 14 из 14)

Коагуляционные вяжущие — это огнеупорная глина, бентонит, кремнийорганические вещества (до температуры их разложения, выше — кремнийорганические вещества являются полимеризационными вяжущими).

Органические —смоляные, смолопековые, крахмал, декстрин, термореактивные продукты и системы, имеющие в основе своего строения ароматические и конденсированные ароматические структуры с гексаметилентетрамином (отвердитель) и др.

В зависимости от состава вяжущего при твердении бетонов могут протекать процессы полимеризации, поликонденсации, образования водородных связей и др.

Вид вяжущего вещества подбирают исходя из двух основных условий: 1) объемопостоянства неформованных материалов (бетонов) и 2) требуемой прочности во всем температурном интервале от комнатной до температур службы.

Объемопостоянство — основное требование к огнеупорным бетонам. Наиболее опасны для разрушения бетона усадочные явления. При этом бетон работает на разрыв, а значение предела прочности бетона на растяжение, как известно, значительно меньше, чем на сжатие. При лабораторном испытании качества огнеупорных бетонов усадка при температуре применения в течение 5 ч нагревания должна составлять не более 1 % Для плотных бетонов и- 2 % — для теплоизоляционных. Из этого условия определяют температуру применения. Рост бетона при температуре службы допускается до 3 % •

При разработке технологии бетонов необходимо подбирать составы, обеспечивающие достаточную прочность при

различных температурных условиях их эксплуатации.

Прочность огнеупорных бетонов в зависимости от температуры меняется следующим образом:

при твердении, происходящем при относительно низких температурах (примерно до 300 °С), прочность повышается;

в интервале 300—1000°С, связанном, в основном, с дегидратацией вяжущего, с потерей химически связанной воды, разрушением полимерно-конденсационной структуры бетонов, прочность снижается («провал прочности»);

при температуре более 1000°С происходит спекание и прочность повышается.

Если в производстве строительных бетонов стремятся к получению бетонов с максимальной прочностью при комнатной температуре, то в технологии огнеупорных бетонов прочность при комнатной температуре должна быть только достаточной, с точки зрения транспортабельности. Твердение вяжущих обеспечивает обычно такую достаточную прочность (при производстве блоков, например, для их последующей транспортировки и монтажа достаточна прочность 10—30 МПа). Разупрочнение бетонов, в общем, — нежелательное явление, но оно не всегда приводит к трещи-нообразованию и полному разрушению. Прочность огнеупорных бетонов является сложной функцией прочности заполнителя, вяжущего, прочности контактной фазы и, особенно, наличия в системе усадочных, термических и других напряжений. В огнеупорных бетонах компоненты обладают различной прочностью и деформативностью, вследствие чего напряжения в них распределены неравномерно. Последние будут концентрироваться на компонентах с высоким модулем упругости (заполнителях), уменьшаясь на компонентах с низким модулем упругости. Этот фактор обусловливает более высокую прочность бетона с прочными заполнителями.

Количество вяжущего в составе бетона часто определяется компромиссными условиями. С одной стороны, чем больше вяжущего, тем прочнее материал при комнатной температуре, но с другой стороны, в этом случае образуется больше жидкой фазы при высоких температурах. Практически количество вяжущего принимают таким, чтобы при температурах службы изделий количество жидкой фазы не превышало 10—15 %.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Самохвалов Г.В. Учебно–методическое пособие по проектированию металургических печей. Учеб. пособие. /Сиб. Металлург. ин–т. – Новокузнецк, 1991 г. – 109с., ил.

2. Компьютерные методы проектирования: Лабораторный практикум Ч.1/ Сост.: М.В. Темлянцев, Н.В. Тмелянцев: СибГИУ. – Новокузнецк, 2006.

3. Расчет нагревательных и термических печей: Справ. Изд. Под ред. Тымчака В.М. и Гусовского В.Л. Авт.: Василькова С.Б., Генкина М.М., Гусовский В.Л., Лифшиц А.Е, Масалович В.Г., Перимов А.А., Спивак Э.И., Тымчак В.М.М.: Металлургия, 1983. – 480 с.

4. Методические указания к курсовому проектированию металлургических нагревательных печей. О. Я. Логунов. г. Новокузнецк, 1971. – 68 с.

5. Винтовкин А.А., Ладыгичев М.Г., Гусовский В.Л., Усачев А.Б. Современные горелочные устройства (конструкции и технические характеристики): Справочное издание/ А.А. Винтовкин и др. – М.: Машиностроение–1, 2001. – 496 с.

6. Сборник примеров решения задач по механике жидкости и газа: учеб. пособие/Н.И. Трофимов, Г.И. Черныш, Ю.Е. Михайленко, В.М. Павловец/ СибГИУ. – Новокузнецк, 1998. – 144с.

7. Теоретические основы технологии огнеупорных материалов. Стрелов К.К.: Металлургия, 1985. – 480 с.