Смекни!
smekni.com

Система управления тиристорного электропривода продольно-строгального станка (стр. 2 из 7)

Задачи системы управления:

- Система управления должна создавать синхронизированную с сетью переменного напряжения m-фазную систему импульсов управления. Например для 3-х фазной системы с нулевой точкой m=3, для мостиковой схемы m=6. Каждый импульс формируется согласно принципа работы выпрямительной схемы.

- Система управления должна обеспечивать сдвиг по фазе импульсов управления относительно анодного напряжения тиристоров.

- Система управления должна обеспечивать симметрию формируемых импульсов по каждой фазе преобразователя. Относительная погрешность симметрии не должна превышать 1-2 электрических градуса.

- Система управления должна обеспечивать необходимый диапазон регулирования угла управления , для нереверсивных схем преобразователей диапазон регулирования составляет от α=0 до α=90 градусов, для реверсивных тиристорных преобразователей диапазон от α=0 до α=165 градусов.

- Система управления должна обеспечивать устойчивость и надёжность работы преобразователя во всех рабочих режимах а, так же при резких изменениях нагрузок, частоты переменного напряжения и других помех.

- Система управления должна автоматически отключать тиристоры от аварийных режимов или ложных сигналов управления.

- Моменты формирования опирающих импульсов должны быть согласованны с амплитудой импульса и крутизной импульса, которые должны быть близки к паспортным параметрам тиристора. Как правило формируемые импульсы имеют крутой передний фронт 2-5 мс, и малую длительность 10-15 градусов.

Исходя из выше изложенных технических требований предъявляемых к системе управления, в проекте в качестве электропривода выбирается электропривод постоянного тока с тиристорным преобразователем, обеспечивающим регулирование напряжения на якоре двигателя. В соответствии с технологическими условиями производства система электропривода будет обеспечивать постановленные задачи.


2. Расчётно-техническая часть

2.1. Расчёт мощности и выбор двигателя привода.

Исходные данные

Cv=225 коэффициент, характеризующий обрабатываемый материал и материал резца, принят для обработки стали и чугуна для резцов из быстрорежущей стали.

CF=92 коэффициент характеризующий обрабатываемый материал и вид обработки.

S=3мм/1 двойной ход стола; подача стола

t=10мм глубина резания

T=250мм стойкость резца

1. Стойкость резания

м/мин(1)

где: m=0,1; xv=0,1; yv=0,3 – показатели степени, зависящие от свойств обрабатываемого металла, материала резца и вида обработки.

2. Усилие резания

Н

где: XF=1; YF=0.75; n=0 – показатели степени

(2)

3. Мощность резания

(3)

4. Полная расчетная мощность

(4)

где: Кз=1,1-1,3 коэффициент запаса

ηст=0,75-0,8 КПД станка

5. Рабочая скорость на валу двигателя

(5)

где: Vобр=80 м/мин – скорость обратного хода стола

i=7 – передаточное число

D=12.4 мм – диаметр шестерни

6. Выбирается двигатель постоянного тока по условиям: Рн≥Рр; ωн≈ωр и выписываются его полные технические данные.

Таблица 1 – Технические параметры двигателя

Тип двигателя Рн Uн nн nmax ηн Iя
1 4ПФ180S 45 440 1450 4500 88 114

Рн≥Рр=45кВт

Расшифровка типоразмеров

4ПФ180S – четвертая серия приводов механизмы, которых предназначены для станков с числовым программным управлением.

180 – высота оси вращения

S – условная длина сердечника якоря

УХЛ4 – умеренный или холодный климат

Охлаждение ICO 6 – независимая вентиляция

Расчет мощности двигателя подачи

1. Суммарное усилие, необходимое для перемещения резца:

(7)

где: Fx=0.4*20487.2=8194.88 H

Fy=0.3*20487.2=6146.16 H

μ=0.15

Fn=8164.88+0.15(20487.2+6146.16)=12189.88 H

2. Мощность подачи

(8)

3. Полная расчетная мощность

(9)

4. Угловая скорость двигателя

(10)

5. Выбирается двигатель подачи по условиям Рн≥Ррп; ωн≈ωп и выписываются его полные технические данные.

Таблица 2 – Технические параметры двигателя подачи

Тип двигателя Рн Uн nн nmax ηн Iя
1 4ПФ160L 30 440 1030 4500 85.5 77

Расшифровка типоразмеров

4ПФ160L – четвертая серия приводов механизмы, которых предназначены для станков с числовым программным управлением.

160 – высота оси вращения

L – большая длина сердечника якоря

УХЛ4 – умеренный или холодный климат

Охлаждение ICO 6 – независимая вентиляция


2.2. Выбор тиристорного преобразователя и расчёт его силовых параметров

Для питания обмотки якоря двигателя используется тиристорный преобразователь.

Исходные данные для расчета:

U1~=380В – переменно напряжение питающей сети

f1=50Гц – частота тока питающей сети

Ud=440В – среднее выпрямленное напряжение

Id=Iн=114А – средний номинальный ток нагрузки

а=30о – оптимальный угол управления тиристорами

2.2.1 Расчет мощности и выбор типового тиристорного преобразователя

где: Кз=1,1-1,2 – коэффициент запаса

Ud=440В – напряжение питания главного двигателя

Id=114А - средний номинальный ток нагрузки

ηТП=0,95-0,97 – КПД тиристорного преобразователя

Условия выбора тиристорного преобразователя:

Рн≥Рр; Iнтп≥Id; ~U=~Ui; Uнтп≥Ud

Рисунок 3 – таблица выбора параметров силового тиристорного преобразователя

2.2.2 Расчет параметров управляемой схемы выпрямления

Определяем фазное напряжение:

Определяем обратно максимальное напряжение на вентиле в непроводящий полупериод:

Определяем максимальное прямое напряжение, приложенное к тиристору в момент его открывания:

Определяем средний ток вентиля:

Определяем действующий ток вентиля:

Выбираются силовые тиристоры по условиям:

Iн≥Iв.ср; Uпр≥Uобр.м; Uнп≥U1; Iвт≥Iв

Принимаются к установке силовые тиристоры типа Т131-50. их технические данные записываются в таблицу 3.

Таблица 3 – Параметры выбора силовых тиристоров

Тип Iм.ср, А

Iн.в, А

действ.

Uобр.м, В Uпр.м, В

U, В

пороговое U

Iобр, мА

ток утечки

Т 131-50 50 78,5 500 100-1200 1,03 6

2.2.3. Расчет параметров силового согласующего трансформатора

U – фаз ное напряжение первичной обмотки трансформатора

I1 – ток первичной обмотки трансформатора

I2 – ток вторичной обмотки трансформатора

Pd – расчётная мощность нагрузки, кВт

Sт – расчётная мощность трансформатора, кВА

Находим фазное напряжение вторичной цепи:

Находим коэффициент трансформации:

Находим ток первичной обмотки:

Находим ток вторичной обмотки:

Находим номинальную активную мощность трансформатора:

PdН=IdН*Udн=114*440=57,1 кВт

Находим полную мощность трансформатора:

SТпd=1.05*57.1=60кВА

Выбираем трансформатор по условиям: I≥I1; I≥I2; U≥U1; Рн≥Рdн; Sн≥Sт