Смекни!
smekni.com

Розвиток Енергетики В Україні (стр. 2 из 4)

У процесі роботи в паливі утворюються довгоживучі радіонукліди: америцій (Am), кюрій (Cm), нептуній (Np), технецій-99 (99Tc) та йод-129 (129I). На сьогодні розроблені і випробувані технології, завдяки яким довгоживучі радіонукліди (з періодом піврозпаду в десятки й сотні тисяч років) вилучаються з відпрацьованого ядерного палива і піддаються трансмутації у швидких реакторах. У такому випадку замкнений ядерно-паливний цикл стає екологічно прийнятним, бо вимагає контролю за збереженням вилучених високоактивних відходів (у тому числі стронція-90 (90Sr) і цезія-137 (137Cs)) протягом лише 100—200 років. Після падіння активності ці відходи заховуються з дотриманням принципу радіаційно-міграційної еквівалентності (згідно з цим принципом, разом з відходами у земних глибинах ховається така ж кількість радіонуклідів, як і в добутому природному урані)[3].

3. Негативні сторони ядерної енергетики

Однак у сучасної атомної енергетики є й істотні недоліки. Вона дає значно менше відходів, ніж інші енергогенеруючі технології (а потім ще й ізолює їх), але відходи все ж такі існують. Безпека поховання великої кількості радіоактивних відходів (РАВ[4]) на десятки і сотні тисяч років викликає сумнів через надійність таких довготривалих фізично-геологічних прогнозів.[5] Невідомо також, яку роль ці штучні поклади небезпечних речовин відіграють у життєдіяльницьких процесах наступних земних цивілізацій...

Більшість АЕС у світі використовують теплові легководні реактори (LWR). До цього класу належать усі нині діючі українські енергоблоки. LWR вимагають збагаченого урану, що зумовлює залежність неядерних країн[6] від постачальників ядерного палива. Тому деякі держави (зокрема Румунія) будують важководні реактори (HWR), де використовується паливо з природного (незбагаченого) урану. Однак глибина вигоряння палива у HWR у 4—6 разів менша, ніж у LWR, а це збільшує об’єми відпрацьованого (опроміненого) ядерного палива (ОЯП) та зумовлює відповідну потребу у місткіших сховищах. Далі: існуючі на сьогодні технології переробки ОЯП передбачають вилучення з нього плутонію, а створення власних збагачувальних комбінатів і потужностей для переробки ОЯП у неядерних країнах дає їм можливість напрацьовувати збройовий уран і плутоній на основі цілком легальних каналів атомної енергетики.

Ще одним недоліком LWR є те, що в якості палива в них використовується 235U, а його запасів у розвіданих на сьогодні родовищах вистачить лише на 50—100 років. Тому треба ширше запроваджувати в енергогенеруючі процеси 238U, запасів якого вистачить на кілька тисячоліть.

За всю історію атомної енергетики світу були дві аварії-катастрофи: Виндскейл (7 жовтня 1957 р.) і Чорнобиль (26 квітня 1986 р.). Першу з них фактично вдалося «зам’яти», друга ж завдала величезного удару по самій ідеї «мирного атома». Головним психологічним наслідком Чорнобиля стала масова радіофобія, коли все пов’язане з ядерною енергетикою почало сприйматися некритично, різко негативно. Доходило до «чорного» комізму. Так, через рік після чорнобильської аварії лікарі у Німеччині повідомляли про серйозні випадки фізичного виснаження людей, котрі харчувалися тільки консервами з датою виготовлення до 26 квітня 1986 р.

4. Атомна енергетика XXI століття

Щоб продуктивно розвиватися далі, атомна енергетика має відповідати цілій низці вимог, серед яких:

· необмежене забезпечення людства паливними ресурсами шляхом ефективного використання природного урану, а надалі і торію;

· унеможливлення важких аварій із радіаційними викидами (які тягнуть за собою евакуацію населення) за будь-яких відмов устаткування, помилок персоналу та зовнішніх впливів (таке унеможливлення має досягатися передусім за рахунок природної безпеки реакторів, яка, у свою чергу, має ґрунтуватися на грамотній експлуатації природних якостей та закономірностей паливних компонентів);

· екологічно безпечні виробництва енергії й утилізації відходів шляхом замкнення паливного циклу зі спаленням у реакторі довгоживучих актиноїдів[7] і продуктів ділення, з радіаційно еквівалентним похованням РАВ без порушення природного радіаційного балансу;

· перекриття каналу поширення ядерної зброї, пов’язаного з ядерною енергетикою, через поступове виключення з неї технологій вилучення плутонію з ОЯП і збагачення урану, а також через забезпечення фізичного захисту ядерного палива від крадіжок;

· економічна конкурентоздатність за рахунок зниження вартості та відтворення палива, підвищення ефективності термодинамічного циклу, розв’язання проблем безпеки АЕС без ускладнення їхніх конструкцій і висунення особливо жорстких вимог до персоналу та устаткування.

Сьогодні в різних країнах ведеться активний пошук ядерних технологій для майбутнього. Багато хто повернувся до реакторних концепцій, від яких раніше відмовився на користь швидких реакторів. Це такі концепції, як: цикл Th-U; циркулювання рідкосольового палива; використання підкритичних реакторів з прискорювальними або іншими джерелами нейтронів тощо. Інші продовжують роботу над швидкими реакторами традиційного типу, розраховуючи на зниження їхньої вартості шляхом оптимізації конструкції і переходу до серійного будівництва... Але навряд чи можна сподіватися на технічну розробку і демонстрацію усієї величезної кількості досліджуваних варіантів. Малоймовірно також, що розрізнені, не об’єднані хоча б єдиним розумінням мети, дослідження «самі собою» приведуть до оптимального варіанту. Отож зусилля вчених світу щодо розробки нової довгострокової концепції ядерної енергетики треба скоординувати та сконцентрувати.

В ідеалі треба було б сподіватися на вироблення концептуальної технології, згідно з якою паливом слугував би природний незбагачений уран, а рівень радіаційної небезпеки отримуваних відходів не перевищував відповідного початкового рівня руди (і водночас при всьому цьому щоб не було аварій).

Теоретична можливість створення великомасштабної ядерної енергетики, яка б відповідала згаданим критеріям, є вельми реальною. За основу такої енергетики могли б послужити великопотужні швидкі реактори в циклі U-Pu з коефіцієнтом відтворення КВ»1. Тобто у такий реактор завантажується так зване рівноважне паливо із суміші природного урану та плутонію. У процесі роботи плутоній вигоряє як паливо, а під дією утворюваних нейтронів із 238U напрацьовується знову ж таки плутоній. Таким чином, після закінчення роботи у відпрацьованому паливі виявляється стільки Pu, скільки було завантажено, а тому при новому завантаженні реактора плутоній не треба ні витягати, ані додавати. Для коригування складу палива слід лише додавати U — задля компенсації спаленої частини. Отже, технологія зводиться тут в основному до очищення палива від продуктів ділення. При цьому довгоживучі радіонукліди повертаються в реактор для трансмутації, а високоактивні Sr та Cs повинні витримуватися у тимчасовому сховищі 100—200 років. Після зниження активності ці відходи навічно ховатимуться згідно із згадуваним вище принципом радіаційно-міграційної еквівалентності. Окрім усього іншого, у швидкому реакторі можна допалювати і радіоактивні відходи з теплових (“повільних”) реакторів.

Отже, швидкі реактори мають багато переваг. Щоправда, за минулі роки склалося уявлення про швидкі реактори, як обов’язково дорогі. Але ситуацію можна поліпшити. За фізичними й технічними принципами конструкції і керування великопотужні швидкі реактори з рідкометалічним охолодженням значно простіші від LWR та інших теплових реакторів, а крім того, куди ефективніше використовують паливо та енергію. Таким чином, проблема їхнього здешевлення полягає лише у випрацюванні оптимальних технічних рішень. Головною причиною високої вартості першого покоління швидких реакторів було використання в них у якості теплоносія хімічно високоактивного натрію. Для запобігання його контакту з водою і повітрям при нормальній експлуатації та на випадок аварії використовуються триконтурна схема охолодження, страхувальний корпус, численні системи контролювання та захисту парогенераторів, перевантаження палива. Усе це «нагромадження» допоміжного устаткування дуже ускладнює всі технологічні процеси та удорожчує конструкцію. А можливість займання та закипання натрію при аваріях не дозволяло повною мірою реалізовувати властиві швидким реакторам якості безпеки.

Не вдаючись у технічні подробиці, відзначимо лише, що описані реактори з КВ>1 (тобто у процесі роботи цього реактора утворюється більше плутонію, ніж його було завантажено) у радянський час створювалися в першу чергу для напрацювання збройового плутонію. Маючи короткий час подвоєння Pu, вони потребували легкого й теплопровідного теплоносія, здатного відводити від палива високі теплові потоки, що і визначило вибір натрію. А для реакторів із рівноважним паливом і помірними навантаженнями можливий інший, менш активний і менш дорогий теплоносій. У свою чергу, це зменшить кількість допоміжних технічно-конструктивних заходів безпеки.

5. Зразок швидкого реактора природної безпеки

Нещодавно у Росії розпочата державна програма «Екологічно чиста енергетика». Її мета — зменшення впливу на навколишнє середовище усіх ланок паливно-енергетичного комплексу. Зокрема, передбачається нарощування екологічно чистого виробництва електроенергії атомними станціями і створення безпечної й економічної моделі АЕС, яка стане базою розвитку ядерної енергетики у великих масштабах.

У рамках програми розробляється проект реактора на швидких нейтронах з охолодженням рідким свинцем. Ця модель називається БРЕСТ (быстрый реактор со свинцовым теплоносителем). Забезпечення безпеки її експлуатації досягається не стільки створенням нових або удосконаленням уже застосовуваних захисних бар’єрів, скільки за рахунок оптимального врахування фундаментальних фізичних та хімічних властивостей ядерного палива, теплоносія й інших компонентів, що дає змогу реалізувати принцип природної безпеки.