Смекни!
smekni.com

Полное магнетосопротивление ферромагнетиков (стр. 2 из 9)

Поэтому при образовании электронных оболочек атома, как правило, сначала заполняются оболочки и подоболочки, расположенные ближе к ядру, а затем уже более удаленные. Однако есть атомы, у которых эта последовательность заполнения мест электронами нарушается, а именно: максимальное число электронов в каждой оболочке не всегда достигается к моменту начала образования следующей оболочки. Тогда в атоме появляются так называемые незаполненные оболочки и подоболочки. Элементы, состоящие из таких атомов, называются переходными; к ним принадлежат, в частности, и элементы, обладающие сильными ферромагнитными свойствами (Fe, Со, Ni, Gd).

Посмотрим теперь, каким образом устроен атом ферромагнитного металла, например железа, и какими магнитными свойствами он обладает, будучи в изолированном состоянии, а также находясь в окружении других атомов железа. Атом железа содержит 26 электронов, которые можно подразделить на четыре оболочки. Первая, самая внутренняя оболочка содержит два электрона (1s-электроны), вторая — восемь (2s- и 2p-электроны), третья - 14 (3s-, Зр-, Зd-электроны) и последняя—два (4s-электроны). При этом вторая оболочка состоит из двух (sи р), а третья — из трех (s, pud) подоболочек (рис. 1).

Рис. 1. Электронные оболочки и подоболочки в атоме железа. Электроны незаполненной подоболочки 3d являются элементарными «магнитиками» железа

Третья и четвертая оболочки атома не достроены: при нормальной достройке в первой из них должно было быть 18 электронов, а во второй — 32. Недостающие четыре электрона в третьей оболочке приходятся на подоболочку 3d.В электронных оболочках некоторые электроны имеют спины, ориентированные в одном направлении, другие — в прямо противоположном; эти направления спинов для последующего удобно обозначить положительными и отрицательными знаками. Рис. 1 показывает, сколько электронов с положительными и отрицательными спинами имеется в каждой оболочке атома железа; мы видим, что первая и вторая оболочки содержат одинаковое число электронов с положительными и отрицательными спинами. Магнитные спиновые моменты электронов в каждой из этих оболочек взаимно компенсируют друг друга так, что последние в магнитном отношении являются нейтральными.

В третьей оболочке первые две подоболочки 3s и 3p, как видно из рис. 1, нейтральны в магнитном отношении, тогда как в подоболочке 3d имеется пять электронов с положительным спином и один с отрицательным. Таким образом, четыре электронных спина из подоболочки 3d остаются нескомпенсированными, а, следовательно, весь атом в целом имеет определенный результирующий магнитный момент. Наружные — «валентные» — электроны атома железа, находящиеся в оболочке 4s, в общем случае также могут быть нескомпенсированы. Опыты установили, однако, что эти электроны (вообще очень слабо связанные с атомом) существенно не могут менять магнитного момента атома.

Итак, элементарными «магнитиками» являются не все электроны атома железа, а только небольшая часть их, В атомах никеля в создании магнитного момента атома принимает участие еще меньшее число электронов, чем в железе.

В изолированных атомах железа и никеля орбитальные движения электронов также дают некоторый магнитный момент. Однако если эти атомы становятся частью металла, то магнитное поле не производит заметного действия на электронные орбиты, и они почти не участвуют в создании магнитных моментов атомов. Это доказывают магнетомеханические опыты, в частности опыт Эйнштейна – де Гааза. Причины такого «замораживания» электронных орбит в атомах ферромагнитных металлов в настоящее время еще не совсем ясны.

Экспериментальные исследования показывают, что вещества, имеющие атомы с недостроенными оболочками, всегда обладают своеобразными магнитными свойствами. Согласно таблице Менделеева атомы с незаполненными оболочками имеют элементы переходной группы: Sc, Ti, V, Cr, Mn, Fe, Со, Ni, Pd, Pt; редкоземельные элементы: Gd, Dy, Er, Yb и др. Эти элементы, как правило, всегда обнаруживают сильный парамагнетизм, а некоторые из них—Fe, Ni, Со и Gd — сильный ферромагнетизм.

Бросающейся в глаза особенностью ферромагнитных тел является их способность к сильному намагничиванию, вследствие которой магнитная проницаемость этих тел имеет очень большие значения. У железа, например, магнитная проницаемость достигает значений, которые в тысячи раз превосходят значения у парамагнитных и диамагнитных веществ. Намагничивание ферромагнитных тел было изучено в опытах А. Г. Столетова и других ученых.

Эти опыты показали, сверх того, что, в отличие от парамагнитных и диамагнитных веществ, магнитная проницаемость ферромагнитных веществ сильно зависит от напряженности магнитного поля, при которой производят ее измерение. Так, например, в слабых полях магнитная проницаемость, железа достигает значений 5—6 тысяч, а в сильных полях значения, падают до нескольких сот и ниже.

Для характеристики явления намагничивания вещества вводится величина I, называемая намагниченностью вещества. Намагниченность в СИ определяется формулой:

,

где μ – относительная магнитная проницаемость вещества,

- индукция магнитного поля в вакууме,

- индукция магнитного поля в веществе.

Для пара- и диамагнетиков намагниченность

прямо пропорциональна индукции
магнитного поля в вакууме (рис 1а.).

Для ферромагнитных тел намагниченность является сложной нелинейной функцией

. Зависимость
от величины
называется технической кривой намагниченности (рис. 1а.). Кривая указывает на явление магнитного насыщения: начиная с некоторого значения
, намагниченность практически остается постоянной, равной
(намагниченность насыщения),
- магнитная постоянная в СИ.

Относительная магнитная проницаемость ферромагнетиков, в отличие от пара- и диамагнетиков имеет весьма большие значения и зависит от индукции магнитного поля, в котором находится вещество. Например, для железа

=5000, для пермаллоя (78% Ni и 22% Fe)
=100 000.

Изучение зависимости намагниченности железа и других ферромагнитных материалов от напряженности внешнего магнитного поля обнаруживает ряд особенностей этих веществ, имеющих важное практическое значение.

Рис. 1а

Возьмем кусок ненамагниченного железа, поместим его в магнитное поле и будем измерять намагниченность железа I, постепенно увеличивая напряженность внешнего магнитного поля H. Намагниченность Iвозрастает сначала резко, затем все медленнее и, наконец, при значениях H около нескольких сот эрстед намагниченность перестает возрастать: все элементарные токи уже ориентированы, железо достигло магнитного насыщения. Графически зависимость величины I(H) в описываемом опыте изображается кривой ОА на рис. 1б. Горизонтальная часть этой кривой вблизи А соответствует магнитному насыщению.

Достигнув насыщения, начнем ослаблять внешнее магнитное поле. При этом намагниченность железа уменьшается, но убывание это идет медленнее, чем раньше шло его возрастание. Зависимость между величинами I(H) в этом случае изображается ветвью кривой на рис. 1б. Мы видим, таким образом, что одному и тому же значению H могут соответствовать различные значения намагниченности (точки х, х и х" на рис. 1б) в зависимости от того, подходим ли мы к этому значению со стороны малых или со стороны больших значений H. Намагниченность железа зависит, стало быть, не только от того, в каком поле данный кусок находится, но и от предыдущей истории этого куска. Это явление получило название магнитного гистерезиса, т.е отставание изменения величины намагниченности ферромагнитного вещества от изменения внешнего магнитного поля, в котором находится вещество. [1]

Когда внешнее магнитное поле становится равным нулю, железо продолжает сохранять некоторое остаточную намагниченность, величина которого характеризуется отрезком ОС нашего графика. В этом и заключаетсяпричина того, что из железа или стали можно изготовлять постоянные магниты.