Смекни!
smekni.com

Полное магнетосопротивление ферромагнетиков (стр. 3 из 9)

Для дальнейшего размагничивания железа нужно приложить внешнее магнитное поле, направленное в противоположную сторону. Ход изменения намагниченности Iпри возрастании напряженности этого противоположно направленного поля изображается ветвью CDE кривой. Лишь когда напряженность этого поля достигнет определенного значения (в нашем опыте значения, изображаемого отрезком OD), железо будет полностью размагничено (точка D). Таким образом, величина напряженности размагничивающего поля (отрезок OD) является мерой того, насколько прочно удерживается состояние намагничивания железа. Ее называют коэрцитивной силой. При уменьшении напряженности поля обратного направления и затем при возрастании напряженности поля первоначального направления ход изменения намагничивания железа изображается ветвью кривой EC'A. При новом повторении всего цикла размагничивания, перемагничивания и повторного намагничивания железа в первоначальном направлении форма этой кривой повторяется.


Рис. 1б. Кривая намагниченности железа: зависимость намагниченности Iот напряженности внешнего магнитного поля H . Стрелки указывают направление процесса

(Ветвь ОА изображает ход намагничивания исходного ненамагниченного материала и не повторяется при повторных циклах. Для того чтобы вновь воспроизвести ветвь ОА, необходимо привести материал в первоначальное ненамагниченное состояние. Для этого достаточно, например, сильно нагреть его.)

Из рис. 1б видно, что эта кривая, изображающая ход зависимости намагниченности железа Iот напряженности внешнего поля H, имеет вид петли. Ее называют петлёй гистерезиса для данного сорта железа или стали. Форма петли гистерезиса является важнейшей характеристикой магнитных свойств того или иного ферромагнитного материала.

В частности, зная ее, мы можем определить такие важные характеристики этого материала, как его магнитное насыщение, остаточное намагничивание и коэрцитивную силу.

Рис. 2. Кривые намагниченности для различных сортов железа и стали:

1 — мягкое железо; 2 — закаленная сталь; 3 — незакаленная сталь

На рис. 2 показана форма петли гистерезиса для различных сортов железа и стали.

Коэрцитивная сила и форма петли гистерезиса характеризуют свойство ферромагнетика сохранять остаточное намагничивание и определяют использование ферромагнетиков для различных целей. Ферромагнетики с широкой петлей гистерезиса называются жесткими магнитными материалами (углеродистые, вольфрамовые, хромовые, алюминиево-никелевые и другие стали). Они обладают большой коэрцитивной силой и используются для создания постоянных магнитов различной формы (полосовых, подковообразных, магнитных стрелок). К мягким магнитным материалам, обладающим малой коэрцитивной силой и узкой петлей гистерезиса, относятся железо, сплавы железа с никелем. Эти материалы используются для изготовления сердечников трансформаторов, генераторов и других устройств, по условиям работы которых происходит перемагничивание в переменных магнитных полях. Перемагничивание ферромагнетика связано с поворотом областей самопроизвольного намагничивания. Работа, необходимая для этого, совершается за счет энергии внешнего магнитного поля. Количество теплоты, выделяющейся при перемагничивании, пропорционально площади петли гистерезиса.

В отличие от тел парамагнитных и диамагнитных для ферромагнетиков магнитная проницаемость μ не остается постоянной, а зависит от напряженности внешнего намагничивающего поля Н. Эта зависимость для магнитного сплава (пермаллоя) и для мягкого железа показана на рис.3. Как мы видим, магнитная проницаемость имеет малые начальные значения в слабых полях, затем нарастает до максимального значения и при дальнейшем увеличении поля в катушке снова уменьшается.

К характерным особенностям ферромагнетиков также относят явление магнитострикции - искажения внешней формы ферромагнетика при его намагничивании. Связанная с таким искажением относительная деформация l/lобычно очень мала — по порядку величины она составляет 10-5-10-6, поэтому обнаружить ее можно лишь точными измерениями. Однако, несмотря на столь незначительное изменение размеров за счет магнитострикции, это явление оказывается существенным при рассмотрении доменной структуры и механизма намагничивания; кроме того, оно имеет множество практических применений.

Важно отметить, что при достижении определенной температуры магнитная проницаемость ферромагнитных тел резко падает до значения, близкого к 1. Эта температура, характерная для каждого ферромагнитного вещества, носит название точки Кюри. (Речь идет не о том нагревании под действием вихревых токов Фуко, которое испытывают все металлы, помещенные в переменное магнитное поле, но о нагревании ферромагнитных тел, обусловленном их перемагничиванием и связанном со своеобразным внутренним трением в перемагничиваемом веществе.) При температурах выше точки Кюри все ферромагнитные тела становятся парамагнитными. У железа точка Кюри равна 767°С, у никеля 360°С, у кобальта около 1130°С. У некоторых ферромагнитных сплавов точка Кюри лежит вблизи 100°С.

Рис. 3. Зависимость μ от Н у магнитного сплава пермаллоя (1) и у мягкого железа (2)

В последнее время большое значение приобрели полупроводниковые ферромагнетики—ферриты, химические соединения типа MeO*Fe2O3, где Me—ион двухвалентного металла (Мn, Со, Ni, Сu, Mg, Zn, Cd, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз большим, чем у металлов). Ферриты применяются для изготовления постоянных магнитов, ферритовых антенн, сердечников радиочастотных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофонах и т. д.

§ 3 МАГНИТНЫЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЖЕЛЕЗОНИКЕЛЕВЫХ СПЛАВОВ

Физические свойства железоникелевых сплавов начали изучаться еще в середине прошлого века. Вначале были исследованы магнитные свойства, причем максимальное внимание уделялось сплавам инварной (29-45% Ni) и пермаллойной (70-80% Ni) областей, что объясняется широким применением этих сплавов в вакуумной технике, электротехнике и радиотехнике. После получения в 1910 г. концентрационной кривой магнитной индукции насыщения исследователи, отвечая на запросы практики, выявили интересные свойства пермаллойных сплавов. Например, повышение максимальной проницаемости до 25·104 гс/э испытывают сплавы с содержанием 65-70% никеля после прохождения так называемой термомагнитной обработки. Была обнаружена также зависимость начальной и максимальной проницаемостей от специальной термической (пермаллойной) обработки сплавов с 50-80% Ni.Среди них особенно выделяется сплав с 78% Ni, у которого начальная проницаемость возрастает от 2000 до 9000. Одна из причин особенных свойств 78-пермаллоя заключается в том, что у него константа магнитной анизотропии и константы магнитострикции близки к нулю, поэтому процесс намагничивания как смещением границ доменов, так и вращением векторов спонтанной намагниченности происходит с малой затратой энергии.

Магнитострикция насыщения λ бинарных Fe - Niсплавов подробно исследована рядом авторов. Оказалось, что сплавам с содержанием никеля около 5, 30 и 81% соответствует нулевое значение λ (рис.4). Отсутствие магнитострикции для сплава с 30% Niсвязано, вероятно, с тем, что он при комнатной температуре может быть неферромагнитен .

Лихтенбергер произвел измерение констант магнитострикции λ100, λ111110 монокристаллах Fe-Niв области концентраций 30-100% никеля (рис.5). Видно, что для сплавов с 60% и 85% никеля все константы равны (сплавы указанных составов обладают изотропной магнитострикцией), а в интервале 30-45% Niконстанты магнитострикции имеют противоположные знаки (λ100<0 λ111 >0, λ110>0). Существует узкая область сплавов (от 80% до 85% Ni), в пределах которой константы магнитострикции проходят через нуль и также имеют противоположные знаки.

Явление магнитострикции возникает за счет изменения магнитного взаимодействия атомов ферромагнитного вещества при переориентации векторов самопроизвольной намагниченности Js доменов во внешнем магнитном поле. В связи с тем, что переориентацию могут вызвать и упругие механические напряжения, в сплавах при их деформации наблюдается механострикция, приводящая к отклонению от закона Гука. С явлением механострикции непосредственно связано явление увеличения под влиянием магнитного поля модуля упругости EFe-Niсплавов (ΔΕ-эффект).

В середине прошлого столетия был открыт так называемый магнитоупругий эффект, который состоит в том, что при деформации ферромагнитных тел наблюдается изменение их намагниченности. Согласно теории при действии на ферромагнетик упругих напряжений изменяется ориентация векторов Js доменов, на характер которой существенное влияние оказывает знак магнитострикции. Например, никель (λ < 0) при растяжении имеет меньшую намагниченность, чем в ненагруженном состоянии, а в ферромагнетиках с λ > 0 растяжение приводит к возникновению петли гистерезиса намагниченности прямоугольного вида.