Смекни!
smekni.com

Полное магнетосопротивление ферромагнетиков (стр. 4 из 9)

Рис.4. Концентрационные кривые магнитострикции насыщения и константы магнитной анизотропии К поликристаллических сплавов системы железо - никель

Рис. 5. Магнитострикция монокристаллов железоникелевых сплавов

Магнитоупругий эффект в области парапроцесса (ΔJs-эффект) при односторонней деформации растяжения (механопарапроцесс) исследован Беловым. Помимо других поправок им было учтено также изменение намагниченности за счет уменьшения площади поперечного сечения образца при растяжении. Наиболее сильно в системе железо-никель ΔJS-эффект проявляется в инварных сплавах, линейно возрастая с увеличением растягивающей нагрузки. Например, относительное возрастание истинной намагниченности при действии нагрузок в 5 кг/мм на сплав 36% Ni- 64% Fе при температуре жидкого азота достигает 0,035%, при комнатных температурах - 0,13%, в области точки Кюри — 1, 2%. С позиций квантовомеханической теории ферромагнетизма этот факт объясняется сильной зависимостью обменного взаимодействия между спинами электронов соседних атомов от межатомных расстояний. При упругом растяжении даже небольшие изменения межатомных расстояний приводят к значительному усилению обменного взаимодействия, ответственного за ферромагнетизм, что и дает увеличение истинной намагниченности. Величину ΔJs-эффекта в области парапроцесса трудно подсчитать, даже если одновременно привлечь зонную и квантовомеханическую теории ферромагнетизма.

Инварные сплавы Fe-Ni обладают и другими интересными физическими свойствами. Так, сплав с γ-решеткой, содержащей 36% никеля, имеет минимальное значение коэффициента линейного расширения. Благодаря этому свойству, этот сплав применяют при изготовлении деталей точных измерительных приборов ив различных конструкциях с вакуумноплотными спаями. Шевенар впервые высказал догадку, что аномалия теплового расширения инвара имеет чисто ферромагнитную природу: при нагревании происходит магнитное превращение, которому сопутствует объемное изменение, компенсирующее обычное термическое расширение тела.

В инварной области наблюдается ухудшение упругих свойств, что, вероятно, обусловлено максимальным значением параметра кристаллической решетки (рис. 4). Исследование температурной зависимости модуля упругости инварного сплава с 42% Niпоказало, что возрастание модуля упругости с повышением температуры до точки Кюри (характерное для многих ферромагнетиков) сохраняется и в намагниченных до насыщения образцах (рис. 7), тогда как у неинварных сплавов в полях насыщения эта аномалия снимается [12]. Положительный знак температурного коэффициента модуля упругости в полях технического насыщения наблюдается в области 29-45% никеля (рис. 6); аномалия исчезает лишь при температурах выше точки Кюри [64]. Если аномалия температурной зависимости модуля Юнга у обычных ферромагнитных металлов и сплавов определяется в основном тем, что под воздействием внешних напряжений происходит переориентация векторов спонтанной намагниченности, то у инварных сплавов большую роль играет еще и вторая причина - изменение самой величины истинной намагниченности под действием напряжений (ΔJs-эффект), которое и обусловливает специфические температурные особенности поведения модуля упругости.

С явлением ΔJs-эффекта тесно связано явление смещения точки Кюри ферромагнетика под действием упругих напряжений, обнаруженное Беловым [65] в инварных железоникелевых сплавах. Ферромагнетизм у сплавов инварной области обусловлен обменным взаимодействием атомов не только первой координационной сферы, но и последующих. Подтверждением этому является тот факт, что ферромагнитное превращение инваров чрезвычайно размыто по температурному интервалу. Возможно, что упругие напряжения меняют параметры первой и последующих координационных сфер, а это, в свою очередь, вызывает изменение обменного взаимодействия. Если намагниченность возрастает, то это приводит к смещению точки магнитного превращения в сторону более высоких температур [12, 65].

Рис. 6. а) модуль нормальной упругости и б) кривые температурного коэффициента модуля нормальной упругости (1 ) и параметра кристаллической решетки ( 2 ) сплавов системы железо - никель


Парапроцесс, как и процессы смещения границ доменов и вращения векторов Jsдоменов во внешнем магнитном поле, сопровождается магнитострикцией, которая изменяет, в основном, объем ферромагнетика. В системе железо-никель максимальное значение объемной магнитострикции парапроцесса также приходится на инварные сплавы. В сущности, это термодинамическое следствие того, что в инварах обменная энергия сильно зависит от межатомных расстояний. Поэтому не случайно Деринг связывал аномалию температурного коэффициента модуля упругости инваров с аномалией объемной магнитострикции в области парапроцесса.

На инварные сплавы железо-никель приходится также максимум электросопротивления и минимум теплопроводности.

В настоящее время существует несколько точек зрения на природу инварных аномалий в железоникелевых сплавах, каждая из которых, хорошо согласуясь с частью наблюдаемых инварных эффектов, не в состоянии охватить проблему в целом. Это работы Белова К. П., Кондорского E. И., Вейса , Сидорова С. К. и др., Шаги и др.

Идея Кондорского о том, что особенности инварных аномалий связаны с отрицательным обменным взаимодействием атомов γ-фазы железа была подтверждена при квантовомеханическом рассмотрении проблемы и широкими экспериментальными исследованиями. Рассматривая работы по принципу подхода в них к электронной структуре атомов в инварных сплавах Fе- Ni, можно сделать вывод, что все инварные аномалии не могут быть объяснены в настоящее время ни с точки зрения коллективизированых, ни с точки зрения локализованных 3d-электронов.

Рис. 7. Температурная зависимость модуля упругости:

а) сплава Fe - 42 % Niв магнитных полях: 1 - О; 2 - 40;

3 - 575 эрстед

б) чистого никеля в магнитных полях: 1-575; 2 -106;

3-41; 4 - 10; 5 - 6; 6 - 0 эрстед

Поэтому Кондорский предлагает для объяснения аномалий инваров гибридную модель, которая включает как s-d, так и d-dобменные взаимодействия. Получила распространение идея о существовании в инварах кластеров, т. е. объединений, включающих в себя до 25 атомов, суммарный спиновый момент которых может быть порядка десятков магнетонов Бора.


Глава 2 ТЕОРИЯ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ В ФЕРРОМАГНЕТИКАХ

§ 1. КЛАССИФИКАЦИЯ ГАЛЬВАНОМАГНИТНЫХ ЯВЛЕНИЙ

Существование самопроизвольной намагниченности в переходных металлах обуславливает аномальный характер, протекающих в них электрических явлений, таких например как электросопротивление и ЭДС.

Явления, в которых наблюдается изменение электросопротивления и ЭДС в магнитном поле носят название гальваномагнитных эффектов.

Они были открыты еще в середине прошлого века В. Томсоном и Нернстом. При этом нами главное внимание будет уделено гальваномагнитным эффектам в металлах, которые хорошо иллюстрируют класс магнитных кинетических явлений в кристаллах вообще.

Эти эффекты изучают как при параллельной ориентации векторов магнитного поля H и электрического тока I(продольные эффекты), так и при взаимно-перпендикулярной (поперечные эффекты). Величина и знак этих явлений (как продольных, так и поперечных) не меняются при изменении поля на прямо противоположное, поэтому обычно носят название четных эффектов.

Эти явления с равным правом можно отнести не только к магнитным, но также к электрическим эффектам. Однако наиболее характерные черты этих явлений связаны с активным воздействием внешнего магнитного поля на движение носителей тока. Именно этот магнитный аспект и будет интересовать нас прежде всего.

В группу гальваномагнитных эффектов входят четыре объединенные общим названием эффекта, которые возникают при приложении к образцу, по которому течет ток i, магнитного поля, перпендикулярного току. Это следующие эффекты:

1. Эффект Холла, при котором в напралении, перпендикулярном H и i , появляется разность потенциалов;

2. Поперечный магниторезистивный эффект, заключающийся в изменении электросопротивления под действием поля H.

3. Эффект Эттингсхаузена, при котором в направлении, перпендикулярном H и i, появляется градиент температуры;

4. Эффект Нернста, при котором градиент температуры появляется в направлении i. (26)

В ферромагнетиках наблюдаются продольный магниторезистивный эффект, аналогичный эффекту 2, а также магнитотермоэлектрический эффект и эффект Холла.

По сравнению с обычными металлами ферромагнетики обладают «аномалиями» электрических и гальваномагнитных свойств. Эти «аномалии», обусловленные возникновением в ферромагнетике ниже точки Кюри самопроизвольной намагниченности, обладают двумя существенно отличными чертами.

Первая из них связана с влиянием самопроизвольной намагниченности на величину эффективной массы, время свободного пробега и граничную энергию Ферми электронов проводимости в ферромагнетике. Это влияние приводит к тому, что под действием внешнего электрического поля электроны проводимости в ферромагнетике могут обмениваться энергией и импульсами не только с колебаниями решетки (фононами), но и с неоднородностями в распределении спинового поля в ферромагнитном кристалле (ферромагнитонами), изменяя его магнитное состояние. В результате такого механизма рассеяния электронов проводимости температурная зависимость электросопротивления ферромагнетика носит аномальный, а именно: ниже точки Кюри в ферромагнетике наблюдается уменьшение электросопротивления по сравнению с его величиной для ферромагнитных металлов; в первом приближении это уменьшение оказывается пропорциональным квадрату самопроизвольной намагниченности.