Смекни!
smekni.com

Полное магнетосопротивление ферромагнетиков (стр. 8 из 9)

Для этой цепи вторичная обмотка катушки взаимной индуктивности всегда остается включенной в цепь гальванометра.

Таким образом, с помощью формул (1) и (2) мы рассчитали напряженность магнитного поля. График зависимости напряженности поля от силы тока в пермеаметре представлен на рис. 21 а.

Рис. 21а

Максимальная ошибка при расчете напряженности поля составила 7,7%.

Для измерения продольного и поперечного магнетосопротивления был изготовлен специальный патрон в виде полой латунной коробки с цилиндрическим гнездом в центре. Со стороны гнезда на патроне были смонтированы разъемы для присоединения исследуемых образцов. В целях уменьшения погрешности измерений, вследствие нагревания образца, в патроне была предусмотрена стабилизация температуры проточной водой.

Исследуемые образцы представляли собой проволоку толщиной 0,25 мм., намотанную на тонкую полую кварцевую трубку длиной 15 мм и диаметром 12 мм. Намотка проволоки велась параллельно оси трубки, равномерно вдоль всей стенки. Для предотвращения закорачивания соседних витков, поверх проволоки наматывалась хлопчатобумажная прочная нить, которая удерживала соседние витки от соприкосновения между собой. Для исследования образцы помещались в цилиндрическое гнездо специального патрона, а концы проволоки припаивались к разъемам, подведенным к гнезду. Затем патрон вместе с исследуемым образцом помещался между полюсами пермеаметра. Исследование велось в двух пространственных положениях патрона:

1. Положение, при котором магнитное поле параллельно образцу (измерение продольного магнетосопротивления).

2. Положение, при котором магнитное поле перпендикулярно образцу (измерение поперечного магнетосопротивления).

По исследуемому образцу пропускался ток 0,1 А.. Электросопротивление образца измерялось с помощью одинарно-двойного моста постоянного тока Р-329., работающего в комплекте с зеркальным гальванометром М 17/11. Градуировка шкалы гальванометра производилась в следующей последовательности.

С помощью ручек декадного переключателя моста Р-329 световой указатель зеркального гальванометра устанавливался в нулевое положение. Затем поворотом ручки декадного переключателя на одно деление ценой 10-3 Ом, производился отброс на число делений

, таким же образом световой указатель отклонялся в другую сторону
от нулевого положения при изменении направления тока. Среднее значение отклонения
рассчитывалось по формуле:

. (3)

По заданному изменению сопротивления 10-3 Ом и отклонению

можно определить чувствительность установки:

Ом/мм2 (4)

Погрешность при определении чувствительности установки составила 0,5%.

Зная S, по отклонению светового указателя гальванометра γ, которое возникает за счет изменения электросопротивления образца под действием внешних сил, можно определить относительное изменение сопротивления образца при параллельном и перпендикулярном намагничивании по формулам:

§ 2 РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ И ИХ ОБСУЖДЕНИЕ

На установке были проведены измерения удельного электросопротивления сплавов с различным содержанием никеля, а также продольного и поперечного гальваномагнитного эффектов.

Получены следующие результаты, которые приведены в таблице и на графиках.

Состав сплава
0% Ni 1.27·10-1 30.8·10-4 -3.7·10-4 34·10-4
9% Ni 2.72·10-1 40.2·10-4 -12·10-4 52·10-4
19% Ni 4.20·10-1 10·10-4 -7·10-4 17·10-4
30% Ni 7.10·10-1 11·10-4 -0.9·10-4 11.9·10-4
39,9% Ni 6.10·10-1 2.4·10-4 -30·10-4 32.4·10-4
50% Ni 3.30·10-1 35·10-4 -9.5·10-4 44·10-4
59% Ni 2.38·10-1 52·10-4 -28·10-4 80·10-4
70% Ni 1.65·10-1 89·10-4 -61·10-4 150·10-4
76,6% Ni 1.71·10-1 123·10-4 -82·10-4 205·10-4
79% Ni 1.55·10-1 117·10-4 -105·10-4 222·10-4
82% Ni 6.35·10-1 22·10-4 -41·10-4 63·10-4
89% Ni 1.31·10-1 137·10-4 -106·10-4 243·10-4
100% Ni 0.098·10-1 100·10-4 -49·10-4 149·10-4

ГРАФИК 1



ГРАФИК 2

ГРАФИК 3


ГРАФИК 4


ГРАФИК 5

Если сравнивать полученную кривую (график 3) с кривой, которую приводит в своей монографии Бозорт (рис. 18), то видно, что ход этих кривых одинаков, однако максимальные значения величины

в области концентрации никеля 70-100% несколько меньше данных других авторов, которые исследовали образцы, прошедшие обычный отжиг. Из общей кривой зависимости
от содержания никеля в сплавах выпадает сплав с 82% Ni. Дело в том, что ранее в литературе отмечалось, что не только гальваномагнитные эффекты имеют в этом сплаве минимальные значения, но также гальваноупругие, термомагнитные, термоупругие.

Так как данные, полученные при исследовании железоникелевых сплавов концентраций 70-100% Ni ниже литературных данных, то была поставлена задача выяснить: сильно ли изменяются гальваномагнитные эффекты если сплав прошел специальную термообработку на упорядочение.

С этой целью отожженный сплав 76,6% Ni закалили. Почему именно этот сплав взяли для закалки? Потому что он наиболее склонен к упорядочению, т.к по процентному содержанию он близок к сплаву 75% Niу которого наблюдаются максимальные эффекты упорядочения.

Закалка отожженного сплава проводилась следующим образом. Сплав помещался в кварцевую трубку, в которой создали вакуум порядка 0,01 мм. рт. ст. и нагревали до температуры 600° С. Затем резким охлаждением образца происходила закалка с целью нарушения упорядоченной структуры сплава. После закалки изменилось лишь удельное электросопротивление на 3,4%, а гальваномагнитные эффекты практически не изменились.

Этот же сплав и сплав 100% Ni были проверены на полевую зависимость. Была обнаружена некоторая странность хода кривой при поперечном гальваномагнитном эффекте, что не соответствует данным, которые приводит Вонсовский. В литературе не указывается какой формы исследовали образец. Мы исследовали образцы в виде тонкой проволоки, намотанной на кварцевые трубки. По всей вероятности при намагничивании образца в поперечном магнитном поле, образец находился не строго перпендикулярно полю, а под некоторым небольшим углом. Вследствие этого намагничивание происходило не строго перпендикулярно образцу, что и привело к необычному ходу кривой. Кроме того, на результат опыта повлияла погрешность измерения, связанная, прежде всего, с особой формой образцов, а также со способом их фиксации в установке.

ЗАКЛЮЧЕНИЕ

Новыми моментами в данной работе являются данные по поперечному гальваномагнитному эффекту всей системы железоникелевых сплавов, данные по продольному гальваномагнитному эффекту в области концентрации никеля от 0 до 30%, применение достаточно сильных полей для исследования образцов, прошедших специальную термообработку на упорядочение.

Итак, в данной работе:

1. Исследовано полное магнетосопротивление железоникелевых сплавов, прошедших специальную термообработку на упорядочение в области концентрации никеля от 0 до 100%.

2. Получена концентрационная кривая поперечного гальваномагнитного эффекта в системе Fe-Ni.

3. Получена концентрационная кривая продольного гальваномагнитного эффекта в области концентрации никеля от 0 до 100% и кривая полного магнетосопротивления в этой области.

4. Исследована полевая зависимость поперечного и продольного гальваномагнитного эффектов в сплавах с 76,6% Ni и чистым никелем.

5. Обнаружено, что из общепризнанной кривой полного магнетосопротивления «выпадает» сплав с 82% Ni.