Пока атомы изолированы друг от друга, они имеют полностью совпадающие схемы энергетических уровней. Заполнение уровней электронами осуществляется в каждом атоме независимо от заполнения аналогичных уровней в других атомах. По мере сближения атомов, между ними возникает все усиливающееся взаимодействие, которое приводит к изменению положения уровней. Вместо одного одинакового для всех N атомов уровня возникают N очень близких, но не совпадающих уровней. Таким образом, каждый уровень изолированного атома расщепляется в кристалле на N густо расположенных уровней, образующих полосу или зону.
Величина расщепления для разных уровней не одинакова. Уровни, заполненные в атоме более близкими к ядру (внутренними) электронами, возмущаются меньше, чем уровни, заполненные внешними электронами. Заметно расщепляются лишь уровни, занимаемые валентными электронами. Такому же расщеплению подвергаются и более высокие уровни, не занятые электронами в основном состоянии атома.
При достаточно малых расстояниях между атомами может произойти перекрывание зон, соответствующих двум соседним уровням атома. Число уровней в такой сливающейся зоне равно сумме количеств уровней, на которые расщепляются оба уровня атома.
Взаимодействующие атомы представляют собой единую квантовую систему, в пределах которой действует принцип запрета Паули. Следовательно, 2N электронов, которые заполняли какой-то уровень в изолированных атомах, разместятся в кристалле попарно (с противоположными спинами) на N уровнях соответствующей полосы.
Нижние, образованные слабо расщепленными уровнями зоны заполняются электронами, каждый из которых не утрачивает в кристалле прочной связи со своим атомом.
Дозволенные значения энергии валентных электронов в кристалле объединяются в зоны, разделенные промежутками, в которых разрешенных значений энергий нет. Эти промежутки называются запрещенными зонами. Ширина разрешенных и запрещенных зон не зависит от размеров кристалла. Таким образом, чем больше атомов содержит кристалл, тем теснее располагаются уровни в зоне. Ширина разрешенных зон имеет величину порядка нескольких электрон-вольт. Следовательно, если кристалл содержит 1023 атомов, то расстояние между уровнями в зоне составляет ~ 10-23 эВ.
При абсолютном нуле энергия кристалла должна быть минимальной. Поэтому валентные электроны заполняют попарно нижние уровни разрешенной зоны, возникшей из того уровня, на котором находятся валентные электроны в основном состоянии атома (валентная зона). Более высокие разрешенные зоны будут от электронов свободны. В зависимости от степени заполнения валентной зоны электронами и ширины запретной зоны возможны три случая, изображенные на рисунке 1. В случае а) электроны заполняют валентную зону не полностью, поэтому достаточно сообщить электронам, находящимся на верхних уровнях, совсем небольшую энергию (~ 10 -23ч10-22 эВ) для того, чтобы перевести их на более высокие уровни. Энергия теплового движения составляет при 1К величину порядка 10-4эВ. Следовательно, при температурах отличных от 0 К часть электронов переводится на более высокие уровни. Дополнительная энергия, вызванная действием на электрон электрического поля, также оказывается достаточной для перевода на более высокие уровни. Поэтому электроны могут ускоряться электрическим полем и приобретать дополнительную скорость в направлении, противоположном направлению поля. Таким образом, кристалл с подобной схемой энергетических уровней будет представлять собой металл. Частичное заполнение валентной зоны (в случае металла ее также называют зоной проводимости) может произойти, если на последнем занятом уровне в атоме находится только один электрон; или имеет место перекрывание зон. В первом случае N электронов проводимости заполняют попарно только половину уровней валентной зоны. Во втором случае число уровней в зоне проводимости будет больше N, так, что даже если количество электронов проводимости равно 2N, они не смогут занять все уровни зоны.
В случаях б) и в) уровни валентной зоны полностью заняты электронами – зона заполнена. Для того чтобы увеличить энергию электрона, необходимо сообщить ему количество энергии, не меньшее, чем ширина запретной зоны ΔW. Электрическое поле сообщить электрону такую энергию не в состоянии. При этих условиях электрические свойства кристалла определяются шириной запретной зоны ΔW. Если ΔW невелико (порядка нескольких десятых эВ) энергия теплового движения оказывается достаточной для того, чтобы перевести часть электронов в верхнюю свободную зону. Эти электроны будут находиться в условиях, аналогичных тем, в которых находятся валентные электроны в металле. Свободная зона окажется зоной проводимости. Одновременно станет возможным переход электронов валентной зоны на ее освободившиеся верхние уровни. Такое вещество называется электронным полупроводником.
Если ширина запрещенной зоны ΔW велика (порядка нескольких эВ), тепловое движение не сможет забросить в свободную зону заметное число электронов. В этом случае кристалл оказывается изолятором.
Таким образом, квантовая теория объясняет с единой точки зрения существование хороших проводников (металлов), полупроводников и изоляторов.
Итак, полупроводниками являются кристаллические вещества, у которых валентная зона полностью заполнена электронами, а ширина запрещённой зоны невелика (не более 1 эВ). Полупроводники обязаны своим названием тому обстоятельству, что по величине электропроводности они занимают промежуточное положение между металлами и диэлектриками. Однако, характерным для них является не величина проводимости, а то, что их проводимость растёт с повышением температуры (у металлов она уменьшается).
Электрическое поле не может перебросить электроны из валентной зоны в зону проводимости. Поэтому полупроводники ведут себя при абсолютном нуле как диэлектрики. При температурах, отличных от 0 К, часть электронов из валентной зоны переходит в зону проводимости, в результате чего в полупроводнике возникают свободные носители зарядов. С повышением температуры число таких носителей растёт и, следовательно, увеличивается электропроводность полупроводника, а значит, уменьшается сопротивление. Зависимость сопротивления полупроводников от абсолютной температуры в определённых температурных интервалах описывается формулой
, (4)где А - константа, k - постоянная Больцмана, ΔЕ - энергия активации. Под энергией активации понимается энергия, которую нужно затратить, чтобы перевести электрон из валентной зоны в зону проводимости. Логарифмирование уравнения (4) даёт
. (5)График зависимости ln(R)=f(1/T) представляет собой прямую, угловой коэффициент которой равен ΔЕ/К. Построив график зависимости (5), этот угловой коэффициент можно определить по формуле
(6)для любых двух точек, лежащих на прямой, а затем найти энергию активации ΔЕ.
Экспериментальная установка
Исследуемые проводник и полупроводник помещаются в термостат, заполненный непроводящей жидкостью. В нижней части термостата помещен нагреватель. Температура измеряется термометром. Сопротивления проводника и полупроводника измеряются одновременно с помощью измерителя иммитанса (рис.2). Для проведения измерения достаточно подключить проводник (полупроводник) к зажимам и установить нужный режим измерения. Нажатием кнопки «Параметр» установить прибор в режим измерения RG. Так как истинная температура проводника и полупроводника может несколько отличаться от показаний термометра в условиях нагревания и охлаждения, то сопротивление следует измерять дважды: при нагревании, а затем при охлаждении, и вычислять среднее значение.
Проведение эксперимента
1. Исследуемые проводник и полупроводник подключить к клеммам измерителей иммитанса в качестве неизвестного сопротивления;
2. Измерить их сопротивления при комнатной температуре;
3. Включить нагреватель и измерять сопротивления Rпов. через каждые 4-5° С при повышении температуры до 50-60° С;
4. Выключить нагреватель и произвести измерения сопротивлений Rпон. проводника и полупроводника при их охлаждении до комнатной температуры;
5. Результаты измерений занести в таблицы 1 и 2;
6. Определить среднее значение сопротивлений, измеренных при повышении и понижении температуры;
7. Построить график зависимости проводника R= f(T), откладывая по горизонтальной оси температуру, а по вертикальной – сопротивление;
8. Из графика определить R0 и α следующим образом: продлить полученную прямую до пересечения с осью R. Точка пересечения даст значение R0 . Значение коэффициента α вычислить по формуле (3), воспользовавшись данными графика.
9. Построить график зависимости lnR=f(1/T), откладывая значения 1/Т по горизонтальной оси, a In R - по вертикальной.
10. Пользуясь формулой (6), определить угловой коэффициент, а затем и энергию активации полупроводника
Е Выразить энергию активации в электрон-вольтах.