Смекни!
smekni.com

Материальные уравнения Максвелла для биологических объектов (стр. 5 из 5)

Блок-схема адмитансометра изображена на рис. 6. Он состоит из автогенератора, в котором используется рассмотренный выше резонансный контур, стандартного частотомера и блока питания. Автогенератор расположен в специальном корпусе, к которому крепится инъекционная игла. Внешний диаметр иглы 0,8 мм, длина 38 мм. Возможно применение других инъекционных игл, особенно в тех случаях, когда исследуемая область находится на больших глубинах. Автогенератор соединяется с частотомером и блоком питания посредством гибких кабелей, что даёт возможность пользоваться датчик подобно инъекционному шприцу.


Сзонда С1

C

Рис. 6. Блок-схема адмитансометра.

5. Полученные результаты и их анализ.

Известно, что стандартные значения проводимости тканевого электролита соответствуют проводимости однопроцентного раствора NaCl в дистиллированной воде. Поэтому основная задача создания админтансометра состояла в том, чтобы обеспечить его максимальную чувствительность именно в этом диапазоне значений проводимости. Это достигается путём подбора элементов самого генератора, его резонансного контура и ёмкости связи датчика с резонансным контуром.

Калибровка админтансометра проводилась на растворах NaCl в дистиллированной воде с заданной концентрацией в широком диапазоне этих значений.

Таблица №2

Концентрация NaCl в H2O, % Резонансная частота f, КГц

H2O

9993,3

0,00156

9993,3

0,003125

9993,2

0,00625

9992,9

0,0125

9992,5

0,025

9991,6

0,05

9989,1

0,1

9982,69

0,2

9967,58

0,4

9939,7

0,6

9916,14

0,8

9896,9

1

9886,0

2

9851,3

4

9835,5

6

9830,4

8

9828,4

10

9826,4

20

9825,5

При этом измерялось значение генерируемой частоты для различных значений концентраций. Эти данные отражены в Таблице №1

График, отражающий указанную зависимость представлен на Рис. 7.

Рис. 7. График зависимости генерируемой частоты от концентрации солевого раствора.

Из представленной таблицы и графика видно, что максимальная чувствительность адмитансометра обеспечивается именно в области концентраций, характерных тканевым электролитам. т.к. в области концентраций порядка одного процента имеется максимальная крутизна преобразования датчика.

Повторяемость результатов измерении заданной концентрации в области этих значений составляет 0.1 кГц. Крутизна преобразования в этой области составляет примерно 50 кГц на один процент концентрации. Это означает, что прибор позволяет обнаруживать изменение в концентрации, составляющие 0.002%. Конечно ни один другой из существующих методов такую точность обеспечить не может. Таких результатов удалось добиться, прежде всего по той причине, что значения проводимости были преобразованы в частоту, которая, как уже указывалось измеряется с гораздо более высокой точностью, чем другие физические величины.

Второй важной особенностью разработанного метода является его локальность. Сам датчик представляет открытый конец коаксиала, работающий в квазистатическом режиме, поскольку длина волны на рабочей частоте значительно превышает апертуру его разомкнутого конца. Это означает, что внешние поля в области его апертуры убывают обратно пропорционально кубу расстояния и сосредоточены практически в области соизмеримой с диаметром иглы, которая составляет 0.35 мм. Это означает, что такой датчик обеспечивает локальность измерений порядка 1 мм. Нам не известны разработки, которые смогли бы обеспечить такую локальность. Применение такого адимтансометра даст возможность не только обнаруживать патологию очень небольших объектов, но и снимать профиль границ патологических образований.

Не следует думать, что такой прибор может быть использован только в медицине. Он может найти широкое применение в фармацевтической промышленности для получения, измерения и контроля дозировки препаратов в растворах. Особенно это важно при малых концентрациях растворимых солей, где адмитансометр имеет тоже очень высокую чувствительность.

Адмитансометр может найти применение в ликёро-водочной промышленности, где требуется постоянный экспресс-контроль качества воды.

5. Заключение.

В данной работе сделаны лишь первые шаги по реализации интересного и практически важного направления по созданию адмитансометра, обеспечивающего высокую точность измерения удельной проводимости электролитов при высокой степени локальности измерений. Разработаны основы строгого электродинамического подхода к этой проблеме. Но это только первые шаги развития этого перспективного направления, поскольку пока решена только проблема измерения активной проводимости. На очереди решение задачи измерения реактивных составляющих адмитанса и развитие многочастотных методов локальной адмитонометрии. Развитие этих методов позволит осуществлять точную локальную экспресс диагностику, что очень важно при проведении хирургических операций. Можно выразить уверенность в том, что мы находимся на пороге нового перспективного научного направления, которое позволит решить ряд диагностических и других проблем, решение которых обычными методами до настоящего времени было затруднительно.

Список литературы:

Ссылки по введению 1 – 15, далее

1.Marsland T.P., Evans S. Dielectric measurements with an open-ended coaxial probe//IEE Proc. H. – 1987.-Vol.134, 4. – P. 341-349

2. Gajda G.,Stuchly S.S. An equivalent circuit of an open-ended coaxial line //IEEE Trans. Instrum. Meas. – 1983. – Vol.32, 4. – P. 506-508

3. Ghannouchi F.M., Bosisio R.G. Measurement of microwave permittivity using a six-port reflectometer and open-ended coaxial line // IEEE Trans. Instrum. Meas. – 1986. – P. 13-18

4. Berubi D., Ghannouchi F.M. A comparative studi of four open-ended coaxial probe for permittivity measurement of lossy dielectrics // IEEE Trans. Microw. Theory Tech. – 1996/- P. 1928-1934

5. Misra D., Chabbra M., Foster K.R. Noninvasive electrical characterization of materials at microwave frequencies using an open-ended coaxial line. // IEEE Trans. – 1900. – P. 8-14

6. Xu Y, Bosisio R.G. Some calculation methods and universal diagrams for measurement of dielectric constant using open-ended coaxial probes // IEE Proc. H. – 1991. – P. 356-60.

7. Misra D.K. A quasi – static analisis of open-ended coaxial lines, // Trans. Microw. Theory Tech. – 1987.- P. 925-928

8. Levine H. R., Papas C.H. Theory of the circular diffraction antenna // J. Appl. Phys. – 1951.- P.29-43

10. Mingzhong Wu, Xi Yao. An improved coaxial probe technique for measuring microwave permittivity of thin dielectrical materials //Meas. Sci. Technol. – 2000.- P. 1617-1622.

11. Ganchev S.I., Bakhtiary S., Zoughi R. Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors // IEEE Trans. Microw. Theory Tech. – 1995. – p. 1023-1029

12. Garcia-Banos, Catala-Civera J. M., Canos A. J. Penaranda-Foix F. Design

Rules for the optimization of the sensivity of open-ended coaxial microwave sensors for monitoring changes in dielectric materials // Meas. Sci. Technol.-2005. 1186-1192.

13. Stuchly S. S., Sibbald C.L. Anderson I.M. A new aperture admittance model for open-ended waveguides // IEEE Trans. Microw. Theory Tech. – 1994. Vol. 42, №2.- P. 199-204.

14. Hoshina S., Kanai Y., Miyakawa M. A numerical study on the meashurement region of an open-ended coaxial probe used for complex permittivity measurement // IEEE Trans. On Magnetics. -2001. –Vol. 37, №5.-P. 3311-3314

15. Baker-Jarvis S. J. Janezic M. D., Domich P.D., Geyer R.G. Analysis of an open-ended coaxial probe with lift-off for nondestructive testing // IEEE Trans. Instrum. Meas. -1994. – Vol. 43, №5. – P. 711-718.

16. Тихомиров А. М. , Импеданс биологических тканей и его применение

в медицине. Российский государственный медицинский университет,

2006.

17. Мартисов Э. Г., Николаев Д.В., Руднев С.Г., Технологии и метода о

ределения состава тела человека, Москва «Наука», 2006.

18. Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М:

Физматгиз, 1973.- 454 с.

19. Ахиезер А. И., Общая физика. Электрические и магнитные явления.

Справочное пособие. Киев. Наукова думка, 1981. – 472 с.

20.Никольский В. В., Никольская Т. И. Электродинамика и распростра

нение радиоволн. М: Наука, 1989. – 543 с.