Аннотация
В работе разработана схема адмитансометра, обеспечивающего высокую точность измерения удельной проводимости электролитов при высокой степени локальности измерений. Разработаны основы строгого электродинамического подхода к этой проблеме. Проведены испытания, из которых видно, что максимальная чувствительность адмитансометра обеспечивается именно в области концентраций тканевых электролитов.
Анотація
В роботі розроблена схема адмітансометра, що забезпечує високу точність виміру питомої провідності електролитів при високому ступені локальності виміру. Розроблені основи строгого електродинамічного підходу до цієї проблеми. Проведено випробування, з яких видно, що максимальна чутливість адмітансометра забезпечується саме в області концентрацій тканинних електролітів.
Содержание:
1. Введение………………………………………………………4
2. Основные определения и состояние проблемы…………10
3. Материальные уравнения Максвелла для биологических объектов………………………………………………………18
3.1. Проводящие среды биологических тканей………..18
3.2. Диэлектрические среды биологических тканей….22
4. Постановка задачи и её реализация………………………25
5. Полученные результаты и их анализ…………………….29
6. Заключение…………………………………………………..31
7. Список литературы………………………………………....32
1. Введение
Диагностика различных заболеваний связана с изучением свойств биологических тканей. Эти свойства изучаются путём воздействия на биологические ткани различными видами излучения и проведением биохимического анализа их состава. В ряду таких ведущих диагностических методов видное место занимает рентгеновская диагностика, ядерный магнитный резонанс, ультразвуковые методы исследования.
В медицинской диагностике широко применяются методы визуализации, связанные с реконструкцией изображения внутренних органов человека. Наибольшее распространение получили рентгеновская компьютерная томография, магниторезонансная томография (МРТ) и радионуклидная эмиссионная томография. Данные способы позволяют получать срезы изображения высокой четкости, однако требуют дорогостоящего оборудования для проведения обследований и имеют обширный перечень медицинских ограничений: существует риск негативного влияния рентгеновского излучения, либо ограничения МРТ, обусловленные сильным магнитным полем, которое не позволяет обследовать пациентов с металлическими имплантатами или установленными электрокардиостимуляторами. Эти методы широко применяются для наблюдения за динамикой процессов в организме при проведении различных диагностических проб и оценке реакций организма на фармакологические препараты. Проведение таких обследований в отдельных случаях требует введения специальных контрастирующих препаратов или радиоактивных изотопов, что также негативно сказывается на безопасности обследования.
В современных условиях весьма актуально создание безопасного для пациента метода диагностики, дополняющего существующие, и позволяющего получать дополнительные данные не только во время лечения или предоперационной подготовки, но и в процессе самой операции.
Измерение импеданса и адмитанса биологических тканей широко используется для диагностики функционального состояния биологических тканей, а также для выявления различных патологий.
Модель с сосредоточенными параметрами является наиболее простой, поскольку в ней открытый конец коаксиала моделируется комплексной ёмкостью
Y= jω ε0εcCf + jω ε0εmC0 ,
где Cf , C0 - константы, зависящие от конструкции открытого конца коаксиала, причём Сf описывает влияние краевого поля внутри зонда, а С0 - влияние краевого поля, связанного с исследуемым веществом, ε0 - диэлектрическая проницаемость свободного пространства, εc - относительная диэлектрическая проницаемость материала, заполняющего коаксиальную линию, εm - диэлектрическая проницаемость исследуемого образца. Данная модель имеет существенные ограничения. С увеличением частоты точность модели резко ухудшается, так как она не учитывает эффекты излучения и наличие высших мод в апертуре зонда, которые при больших значениях εm и ω могут существенно повлиять на результаты измерения. В работе [1] эффекты излучения предлагается моделировать включением члена, имеющего размерность проводимости и пропорциональногo
: Y= jω ε0εcCf + jω ε0εmC0 +G(ε0εm)2,5Относительно более точная нелинейная модель приведена в работе [2]
Y=K1 + K2εm + K4 +K4
Где Кi - комплексные, в общем случае, коэффициенты модели, зависящие от частоты, и параметров коаксиальной линии. Для их определения необходимы калибровочные измерения в четырёх средах с точно известными диэлектрическими свойствами.
Все эти модели основаны на квазистатическом анализе и, следовательно, справедливы для электрически малых апертур и ограниченного диапазона частот.
В работах [3, 4] была предложена также модель виртуальной линии, не нашедшая, впрочем, широкого распространения. Она состоит в моделировании тестируемой среды виртуальной линией передачи длиной L и материалом заполнения εm с теми же размерами, что и реальной коаксиальной линии. На конце виртуальная линия считается разомкнутой, т.е. адмитанс нагрузки линии полагается равным нулю. Модель дает уравнение, связывающее искомую диэлектрическую проницаемость εm с измеренным входным коэффициентом отражения Rin на заданной частоте f [3].
Гдe βc - постоянная распространения в коаксиальной линии зондa;
L - длина виртуальной линии
D - длина физической линии (зонда).
Две последние величины в данном уравнении неизвестны. Они находятся по результатам измерений коэффициента отражения в двух калибровочных средах с известными диэлектрическими параметрами посредством итерационной процедуры подробно описанной в [3].
В более строгих электродинамических моделях вывод выражения для адмитанса зонда основан на записи выражений для поля в коаксиальной линии и в зондируемой среде и согласования магнитных компонент на плоскости апертуры с учётом граничных условий, требующих непрерывности тангенциальных компонент электрического и магнитного поля на границе раздела. Наиболее широко используется модель, учитывающая наличие в коаксиальной линии только основной распространяющейся ТЕМ моды. В рамках этой модели в работах [5-8] были получены три эквивалентных выражения для нормированного адмитанса открытого конца коаксиальной линии с бесконечным фланцем:
Y=
(1.1)Y=G + jB
G=
, (1.2)B=
.Y=
(1.3)Где a и b - внутренний и внешний радиусы коаксиальной линии, k0, kc, km - волновые числа в вакууме, коаксиальной линии и зондируемой среды соответственно.
Первое из этих выражений требует вычисления тройного интеграла с особенностью в точке ρ=ρ' при φ=0 и поэтому редко используется на практике. Интегралы в (1.2) обычно вычисляются разложением в ряд по степеням
[5,8]. Наиболее удобным для быстрого решения как прямой, так и обратной задачи – вычисление εm по известному значению Y(ω)- является выражение (1.3). На основе этого выражения получены результаты, представленные в [9-11].Однако погрешность данных, полученных с помощью этой модели, возрастает с увеличением частоты и диэлектрической проницаемости исследуемой среды.
Наиболее строгими являются так называемые полуволновые электродинамические модели, учитывающие не только наличие в коаксиальной линии ТЕМ волны отражённой от её открытого конца, но и возбуждение на апертуре мод высших порядков. Поскольку в поле падающей ТЕМ волны, и коаксиальная линия аксиально-симметричны, то возбуждаются только моды ТМ0n При выводе данных моделей основная идея заключается в получении бесконечной системы линейных уравнений для коэффициентов отражения Rn основной ТЕМ (n=0) и высших ТМ0n (n=1,2…) мод. В физически обоснованном приближении учёта лишь конечного числа N возбуждаемых высших мод эта система сводится к конечной системе N+1 уравнений, решение которой осуществляется численными методами.
Основным недостатком полволновых моделей является необходимость громоздких вычислений, особенно при решении итерационными методами обратной задачи – нахождении диэлектрической проницаемости среды по известному значению коэффициента отражения основной моды R0.