Цель работы: исследовать АЧХ и ФЧХ последовательного и параллельного колебательного контура, определить резонансную частоту, найти добротность последовательного контура.
Приборы и материалы: колебательный контур, осциллограф, источник питания, генератор, провода, магазин сопротивлений, индуктивностей и конденсаторов.
Теоретическая часть
Колебательным контуром называют электрическую цепь, состоящую из элементов, способных запасать электрическую и магнитную энергию, и в которой могут возбуждаться электрические колебания. Эквивалентная схема простейшего колебательного контура состоит из ёмкости, индуктивности и сопротивления.
Колебательные контуры нашли широчайшее применение в радиоэлектронике в качестве различных частотно- избирательных систем, то есть, систем, у которых амплитуда отклика цепи может резко изменится, когда частота внешнего воздействия достигает некоторых значений, определяемых параметрами цепи. Явление резкого возрастания амплитуды отклика называется амплитудным резонансом.
В теории цепей обычно используется другое определение резонанса. Под резонансом понимают такой режим работы электрической цепи, содержащей ёмкости и индуктивности, при котором реактивные составляющие входных сопротивления и проводимости равны нулю, то есть, отсутствует сдвиг фаз между напряжением и током на входе колебательного контура. Такой резонанс называют фазовым. Частоты, соответствующие фазовому и амплитудному резонансам, как правило, близки и в некоторых случаях могут совпадать.
График АЧХ для последовательного контура приведён на рис.3. Из графика видно, что графики АЧХ для C и L пересекаются при резонансной частоте w =
. Найдём частоты, при которых АЧХ достигает максимума. Они равныw
= (1)w
= (2)-
для R,-
для C,-
для L.рис.3.
Графики ФЧХ выглядят следующим образом
рис.4 - для RПри подаче импульсного напряжения мы получим график затухающих колебаний (рис.5), в аналитическом представлении этот график имеет вид
U(t) = U
e coswt (3)где d - коэффициент затухания.
рис.5.
Кроме d у системы есть ещё одна важная характеристика Q – добротность, которую можно найти как отношение U
или U к U при резонансной частоте. Через параметры системы выражениe для Q можно записать в видеQ =
= = (4)Так же добротность можно выразить через d,т.е.
Q =
(5)где T – период колебания.
Практическая часть
Задание 1: Исследовать амплитудно-частотные характеристики последовательного колебательного контура. Определить добротность. Построить графики.
1). Для индуктивности (С = 10000 пФ; R = 62 Ом; L=2,6 мГн)
Таблица 1: Зависимость коэффициента усиления от частоты.
f,кГц | 2 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 21 | 23 | 25 | 28 | 32 | 35 | 36 | 39 |
K | 0,2 | 1,2 | 2,7 | 3,9 | 4,5 | 5,1 | 6,3 | 8,7 | 9,9 | 13 | 16 | 20 | 16 | 10 | 6,1 | 2,1 |
2). Для конденсатора (С = 10000 пФ; R = 62 Ом; L=2,6мГн)
Таблица 2: Зависимость коэффициента усиления от частоты.
f,кГц | 10 | 14 | 16 | 20 | 24 | 26 | 27 | 28 | 30 | 35 | 40 | 50 | 60 | 80 | 100 |
K | 1,2 | 1,4 | 1,6 | 2,5 | 4,7 | 8,4 | 21,7 | 16,6 | 7,8 | 3,4 | 1,9 | 0,7 | 0,6 | 0,2 | 0,1 |
3).Для сопротивления (С = 10000 пФ; R = 62 Ом; L=2,6 мГн )
Таблица 3: Зависимость коэффициента усиления и разности фаз от частоты
f,кГц | 6 | 8 | 9 | 10 | 12 | 14 | 16 | 19 |
K | 0,03 | 0,05 | 0,06 | 0,09 | 0,12 | 0,14 | 0,15 | 0,18 |
Dj,o | 66,6 | 59,4 | 55,8 | 54 | 52,2 | 45 | 43,2 | 36 |
f,кГц | 25 | 26 | 27 | 28 | 30 | 33 | 35 |
K | 0,57 | 0,91 | 0,79 | 0,66 | 0,52 | 0,41 | 0,28 |
Dj,o | 23,4 | 10,8 | 16,2 | 25,2 | 109,8 | 118,8 | 126 |
График 1. АЧХ для L,С
График 2. АЧХ для сопротивления
График 3. ФЧХ для сопротивления
Из графика 1 видно, что резонансная частота fр, = 26 кГц.
Определение добротности последовательного контура:
(С = 10 000 пФ; R = 62 Ом; L=2,6 мГн).
Добротность рассчитаем двумя способами:
1-ый способ: используя параметры контура:
Получаем, что Q = 8,14
2-ой способ: по полученной АЧХ контура:
Q= f0/f0,7
Получаем, что Q = 13,73
Задание 2: Исследовать амплитудно-частотную (АЧХ) и фазово-частотную (ФЧХ) характеристики параллельного колебательного контура. Определить период затухания при подаче сигнала с импульсного генератора. Построить графики.
Параллельный контур. (С = 10000 пФ; R = 1 кОм; L=2,6 мГн )
Таблица 4:Зависимость коэффициента усиления и разности фаз от частоты.
f,кГц | 1,2 | 2 | 3 | 5 | 7 | 10 | 14 | 18 |
K | 0,02 | 0,04 | 0,07 | 0,12 | 0,15 | 0,20 | 0,31 | 0,62 |
Dj,o | 77,4 | 55,8 | 54 | 45 | 46,8 | 36 | 32,4 | 32,4 |
f,кГц | 23 | 25 | 29 | 30 | 35 | 40 | 50 |
K | 0,95 | 0,87 | 0,77 | 0,64 | 0,51 | 0,47 | 0,33 |
Dj,o | 14,4 | 21,6 | 30,6 | 18 | 18 | 18 | 18 |
Графики представлены ниже
График 4. АЧХ параллельного контура
График 5. ФЧХ для параллельного контура
По полученным данным можно определить резонансную частоту.
fp= 23 кГц.
Определение добротности параллельного контура:
(С = 10 000 пФ; R = 1 кОм; L=2,6 мГн).
Снова рассчитаем добротность Q двумя способами:
1-ый способ:
Q=f0/f0,7= 1,92
2-ой способ:
= 2,35Выводы:
1. Был исследован последовательный колебательный контур, получены амплитудно-частотные и фазово-частотные характеристики, определена резонансная частота, равная 26 кГц. Расхождения с теорией лежат в пределах допустимой погрешности. Графики, полученные в ходе работы, совпадают с ожидаемым результатом.
2. Исследован параллельный колебательный контур. Для него также были построены АЧХ и ФЧХ. Определена резонансная частота fp = 23 кГц.
3. Исследован и зарисован отклик последовательного и параллельного контуров на импульсное воздействие. По полученному графику определен период затухания контура при данных параметрах Т = 18*10-6 с.
4. По полученным данным определены добротности последовательного и параллельного контура. Различия между значениями добротностей были объяснены выше.