Министерство образования Республики Беларусь
Учреждение образования
“ Белорусский государственный университет
информатики и радиоэлектроники ”
Кафедра метрологии и стандартизации
“К защите допускаю”
руководитель проекта
Басов В.Г.
“____”________2006г.
Курсовой проект
на тему:
«Информационно – измерительная система удалённого действия для контроля светового излучения»
Выполнил: Проверил:
студент гр.262101 Басов В.Г.
Дьянов А.А.
Минск 2006
Содержание
Введение………………………………………………………………………... | 4 |
1 Обзор методов решения аналогичных задач……………………………….. | 9 |
2 Выбор, обоснование и предварительный расчет структурной схемы……. | 13 |
2.1 Модули серии ADAM-5017…………………………………...…….….. | 13 |
2.2 LUX LITE - Датчики видимого светового излучения……....……..…. | 14 |
2.3 Расчёт детекторов | 16 |
3 Описание принципа работ разработанной структурной схемы……….….. | 21 |
4 Списание схемы электрической и электрический расчет…………….…… | 22 |
5 Определение метрологических характеристик измерительного канала и расчет класса точности канала………………………………………………... | 27 |
Заключение……………………………………………………………………... | 29 |
Список литературы…………………. ………………………………………… | 30 |
Введение
Прогрессивное развитие производства, эксплуатация различных объектов невозможно без измерения большого количества физических величин (ФВ). Измерительные системы разнообразны по назначению и характеризуется такими параметрами как чувствительность, точность и т.п. Но основная часть из них может одновременно измерять какую-либо одну величину. Однако, эта ФВ имеет постоянное значение, а внешние условия не изменяются. На практике, в производстве или в научных исследованиях приходится иметь дело с огромным потоком информации, т.e. получать сведения о большом количестве ФВ, которые в свою очередь, могут быстро меняться.
В современной измерительной техники наметились общие тенденции, из которых главными являются: переход от единичных приборов к измерительным системам, в том числе к самонастраивающимся и адаптивным системам; развитие измерительных подсистем в робототехнических комплексах и совершенствование систем активного контроля; применение микропроцессоров в измерительных системах и устройствах для переработки измерительной информации, применение числового программного управления процессом измерений, приведшим к созданию информационно-измерительных систем (ИИС).
ИИС – совокупность функционально объединенных измерительных, вычислительных и др. вспомогательных технических средств для получения измерительной информации, ее преобразования, обработки в целях представления потребителю в требуемом виде, либо автоматического осуществления функций контроля, диагностики, идентификации.
В ИИС объединяются технические средства, начиная от датчиков, АЦП, каналов передачи и кончая устройством выдачи информации, а также вычислительные средства с соответствующим программным обеспечением. Последние необходимы как для управления работой собственной системы, так и для решения в ИИС измерительных и вычислительных задач, а также управление конкретным экспериментом.
Задача, решаемая ИИС, обратная задаче отдельного измерительного устройства: не расчленять параметры объекта измерения с целью выделить и воспринять их по отдельности, а объединить данные обо всех главных параметрах объекта и создать тем самым достаточно полное, совокупное его описание. Таким образом, отличительными особенностями ИИС являются: одновременное измерение многих параметров объекта (т.е. многоканальность) и передача измерительной информации в единый цент; представление полученных данных, в том числе их унификация, в виде наиболее удобном для последующей обработки получателем.
Создание ИИС связано с решением системных вопросов: метрологическая унификация средств измерений (датчиков, преобразователей, указателей) независимо от вида измеряемых величин; оптимизация распределения погрешностей между различными средствами измерений, входящими в ИИС; наиболее целесообразное размещение указателем перед оператором.
Структурная схема любой ИИС показана на рисунке 1.
Рисунок 1 — Обобщенная структурная схема ИИС
Где 1, 2, ...N- устройство сбора и измерения информации. Этими устройствами являются датчики, воспринимающие различные ФВ и преобразующие их в электрические сигналы; измерительные устройства, выполняющие собственно-измерительные операции: сравнение с мерой, квантование, кодирование.
Устройство обработки информации предназначено для выполнения математической обработки измерительной информации по заданному алгоритму. Сюда же может входить устройство запоминания для хранения информации.
Устройство отображения информации – для предоставления полученной информации оператору, которое может состоять из декодирующих, регистрирующих и показывающих устройств.
Устройство управления – для организации взаимодействия всех остальных устройств [1].
В реальных ИИС некоторые устройства могут отсутствовать. Например: устройство обработки или хранения информации. Но устройство сбора, измерения и представления информации характерны любой ИИС.
Уместно дать краткую историческую справку развития ИИС и указать основные области их применения.
Основная концепция нового класса средств ИИТ — измерительных информационных систем — была сформулирована в начале 60-х годов. В основу концепции ИИС уже в то время была положена системная организация совместной автоматической работы средств получения, обработки и передачи количественной информации. Тогда были созданы ИИС, которые можно отнести к первому поколению таких систем. Системы первого поколения характеризуются централизованным циклическим получением измерительной информации и обработкой ее в основном с помощью входящих в состав ИИС специализированных вычислительных устройств, использованием в качестве элементной базы дискретной полупроводниковой техники. Дальнейшая обработка информации при необходимости в большинстве случаев производилась вне ИИС, в универсальных ЭВМ, занятых обслуживанием и других источников информации. Однако сложные ИИС в то время имели в своем составе ЭВМ, выполняющие только задачи, стоящие перед этими системами.
Измерительные информационные системы второго поколения (70-е годы) характеризуются адресным сбором измерительной информации, обработкой информации с помощью ЭВМ, входящих в состав систем, и в меньшей степени с помощью специализированных вычислительных устройств, использованием в качестве элементной базы микроэлектронных схем малой и средней степени интеграции.
Широкое введение ЭВМ в состав ИИС стало возможным после организации промышленного выпуска управляющих вычислительных машин и комплексов, а также малых ЭВМ с достаточными вычислительными и логическими возможностями, гибким программным управлением, приемлемыми габаритами, потребляемой энергией и стоимостью.
Улучшение многих характеристик ИИС было достигнуто благодаря использованию больших интегральных микросхем, микропроцессоров, микропроцессорных наборов (включая устройства памяти с большим объемом запоминаемой информации) и микро-ЭВМ.
Качественно новые возможности при проектировании, изготовлении и эксплуатации ИИС были получены при применении стандартных цифровых интерфейсов и промышленных функциональных блоков, совместимых между собой по информационным, метрологическим, энергетическим и конструктивным характеристикам. Применение в ИИС ЭВМ и стандартных цифровых интерфейсов, привело к необходимости формального описания алгоритмов действия систем и к резкому возрастанию роли программного обеспечения систем.
Оказалось, что для цифровых централизованный ИИС с программным управлением можно организовать промышленный выпуск универсального цифрового ядра, в которое входят цифровые измерительные и вычислительные средства и стандартные устройства ввода и вывода цифровой информации.
Количество созданных и реально действующих в нашей стране ИИС резко возрастает и трудно поддается оценке. Видимо их число может быть оценено в несколько десятков тысяч.
Измерительные информационные системы находят применение везде, где необходимо автоматическое получение опытным путем количественной информации о состоянии объектов исследования, причем это получение связано с выполнением массовых операций и (или) осуществлением измерений в сложной форме, недоступной локальным измерительным приборам. Не имея возможности рассмотреть весь огромный диапазон областей применения ИИС, остановимся хотя бы на перечислении некоторых из них.
В измерительном оборудовании систем управления, жизнеобеспечения и научно-исследовательских работ космических кораблей, в наземных измерительно–управляющих комплексах все большую роль играют ИИС. Радиотелеметрические системы космических исследований являются важной разновидностью ИИС.
В области экспериментальной аэродинамики с помощью ИИС производится измерение аэродинамических сил, распределения давлений, температур, расходов газов и многих иных величин.
Экспериментальная прочность нуждается в измерении внешних сил, воздействующих на исследуемые объекты, и реакции на их действие (напряжения в материале, смещения и т. д.), характеристик самих объектов и т. п. В обширных областях тензометрии, динамометрии, термометрии и т. п. в качестве основных экспериментальных средств применяются ИИС.