Смекни!
smekni.com

Оптика и элементы атомной физики (стр. 15 из 19)

Экспериментальное доказательство существования светового давления на твёрдые тела дано в опытах П.Н.Лебедева. Лебедев использовал тонкий подвес на тонкой нити, по краям которого прикреплены лёгкие крылышки, одни из которых зачернены, а поверхности других зеркальны. Для исключения конвекции использовалась подвижная система зеркал, позволяющая направлять свет на обе поверхности крылышек, подвес помещался в откачанный баллон, крылышки были очень тонкими. Световое давление определялось по углу закручивания нити. Оказалось, в частности, что давление на зеркальную поверхность вдвое больше, чем на зачернённую.

§ 26. Эффект Комптона и его элементарная теория.

Наиболее чётко корпускулярные свойства света проявляются в эффекте Комптона. Американский физик А. Комптон, исследуя в 1923 г. рассеяние монохроматического рентгеновского излучения веществами с лёгкими атомами (парафин, бор), обнаружил, что в составе рассеянного излучения наряду с излучением первоначальной длины волны наблюдается также более длинноволновое излучение. Опыты показали, что разность Dl = l - l не зависит от длины волны падающего света и природы рассеивающего вещества, а определяется только углом рассеяния q: Dl = l - l = 2lcsin2(q/2), где l – длина волны рассеянного излучения, lс – комптоновская длина волны (при рассеянии фотона на электроне lс = 2.426 пм).

Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского или g) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой, длина волны при рассеянии меняться не должна, поскольку электрон под действием волны колеблется с частотой волны и излучает волны той же частоты.

Объяснение эффекта Комптона даётся на основе квантовых представлений о природе света. Если считать, что излучение имеет корпускулярную природу, т.е. представляет собой поток фотонов, то эффект Комптона – результат упругого столкновения рентгеновских фотонов со свободными электронами вещества. В процессе столкновения фотон передаёт электрону часть своей энергии и импульса.

Рассмотрим упругое столкновение двух частиц – налетающего фотона, обладающего импульсом pn = hn/cи энергией en = hn, с покоящимся свободным электроном (энергия покоя Wo = moc2). Фотон, столкнувшись с электроном, передаёт ему часть своей энергии и импульса и изменяет направление движения (т.е., рассеивается). Уменьшение энергии фотона означает увеличение длины волны (или уменьшение частоты) рассеянного излучения. Естественно, при упругом столкновении выполняются законы сохранения энергии и импульса.

Согласно закону сохранения энергии: Wo + en = W + en.

Согласно закону сохранения импульса: pn = pe + pn, где Wo = moc2 – энергия электрона до столкновения, en = hn - энергия налетающего фотона, W =

- энергия электрона после столкновения (используется релятивистская формула, так как скорость электрона отдачи в общем-то весьма значительна), en = hn – энергия рассеянного фотона. Подставив соответствующие значения в формулы законов сохранения, получим:

moc2 + hn =

P

Решая эти уравнения получим:

moc2 (n - n) = hnn (1 – cosq).

Поскольку n = с/l, n = c/l и Dl = l - l, получим

Dl =

h/moc = lc – комптоновская длина волны (2.426 пм).

Наличие в составе рассеянного излучения фотонов с исходными частотами объясняется соударениями фотонов со связанными электронами атома, что означает взаимодействие фотона как бы со всем атомом в целом. Поскольку атом намного тяжелее электрона, то переданная часть энергии атому, налетевшим фотоном, пренебрежимо мала и n»n.

Эффект Комптона не может наблюдаться в видимой области спектра, поскольку энергия фотона видимого света сравнима с энергией связи электрона с атомом, при этом даже внешние электроны нельзя считать свободными.

Как эффект Комптона, так и фотоэффект обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором – поглощается. Рассеяние происходит при взаимодействии фотона со свободным электроном, а фотоэффект – со связанными электронами. При столкновении фотона со свободным электроном не может произойти поглощение фотона, поскольку это находилось бы в противоречии с законами сохранения – фундаментальными законами природы. Происходит именно рассеяние, то есть – эффект Комптона!

§ 27. Корпускулярные и волновые свойства света.

Рассмотренные в предыдущих лекциях явления – излучение чёрного тела, фотоэффект, эффект Комптона – служат доказательством корпускулярных представлений о свете. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую природу света. Наконец, отражение и давление света (и некоторые другие явления) объясняются как волновой, так и квантовой (корпускулярной) теориями. Таким образом, электромагнитное световое излучение обнаруживает и корпускулярные и волновые свойства.

Имеются соотношения, которые связывают корпускулярные (энергия и импульс фотона) и волновые (частота или длина волны) свойства света: en = hn, pn = hn/c = h/l.

Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определённые закономерности в их проявлении. Так, волновые свойства света проявляются в закономерностях его распространения (интерференция, дифракция, поляризация), а корпускулярные – в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и тем труднее обнаруживаются квантовые свойства света. Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и тем труднее обнаруживаются волновые свойства – рентгеновское излучение, например, дифрагирует только на кристаллической решётке твёрдых тел.

Можно интерпретировать дифракционную картину, используя не только волновые, но и квантовые свойства света. При прохождении света через щель происходит перераспределение фотонов в пространстве и то большее или меньшее их количество попадает в разные точки экрана, формируя таким образом дифракционную картину. И поскольку освещённость экрана пропорциональна квадрату амплитуды, то квадрат амплитуды является мерой вероятности попадания фотона в данную точку экрана.

ТЕМА 9: Голография и лазеры.

§ 28. Понятие о голографии.

Голография (от греческого – полная запись) – особый способ записи и последующего восстановления волнового поля, основанный на регистрации интерференционной картины. Основана на законах интерференции и дифракции.

Голография была изобретена английским инженером Д. Габором в 1947 г. (Нобелевская премия 1971 г.). Экспериментальная реализация стала возможна после появления в 1960 г. лазеров.

Рассмотрим элементарные основы принципа голографии, т.е. регистрации и восстановления информации о предмете. Для регистрации и восстановления световой волны нужно уметь регистрировать, запоминать и восстанавливать амплитуду и фазу идущей от предмета волны, поскольку распределение интенсивности в интерференционной картинке определяется как амплитудой интерферирующих волн, так и разностью их фаз. Поэтому для регистрации как фазовой, так и амплитудной информации кроме волны, идущей от предмета (предметной волны), используют ещё когерентную с ней волну, идущую от источника света (опорную волну). Идея голографирования состоит в том, что фотографируется распределение интенсивности в интерференционной картине, возникающей при суперпозиции волнового поля предмета и когерентной ему опорной волны. Последующая дифракция света на зарегистрированном распределении почернений в фотослое восстанавливает волновое поле предмета и позволяет изучение этого поля при отсутствии предмета.