Смекни!
smekni.com

Оптика и элементы атомной физики (стр. 16 из 19)

Практически эта идея может быть осуществлена по схеме, изображённой на рисунке:


Лазерный пучок делится на две части, причём одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны, являясь когерентными и накладываясь друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получим голограмму, зарегистрированную на фотопластинке.

Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Её освещают опорным пучком того же лазерного источника. В результате дифракции света на голограмме восстанавливается копия предметной волны, образующая объёмное мнимое изображение предмета, которое расположено в том месте, где раньше находился сам предмет. Если голограмму, зафиксированную на фотопластинке расколоть на несколько частей, то и каждая часть даст то же изображение, только менее чёткое. Голограмма служит как бы дифракционной решёткой с очень сложным рисунком штрихов.

§ 29. Лазеры.

Получать голограммы оказалось невозможным без лазерных источников света, и английский инженер Габор, выдвинув идею голографического изображения, получить нормальную объёмную голограмму не мог, а получил простейшие плоские картинки. Он применял для этой цели ртутную лампу с фильтрами и диафрагмой. Только после изобретения лазера в 1960 году стало возможным получать качественные трёхмерные цветные голографические изображения. Что же такое лазер?

Лазер обязательно имеет три компонента: 1) активную среду, в которой создаются состояния с инверсной заселённостью; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространстве избирательное направление пучка фотонов и формирующее выходящий световой пучок).

Каждый фотон, случайно родившийся при спонтанных переходах (т.е. самопроизвольных), в принципе может инициировать (порождать) в активной среде множество вынужденных переходов, в результате чего появляется лавина вторичных фотонов. Таким образом и зарождается лазерная генерация. Однако спонтанные переходы носят случайный характер, и спонтанно рождающиеся фотоны испускаются в разных направлениях. Такое излучение не может обладать высокими когерентными свойствами.

Для выделения направления лазерной генерации используется очень важный элемент лазера – оптический резонатор. В простейшем случае им служит пара обращённых друг к другу параллельных зеркал, между которыми помещается активная среда (кристалл или трубка с газом (диаметр трубки 5-7 мм)). Как правило, зеркала изготавливаются так, что от одного из них излучение полностью отражается, а второе полупрозрачно. Фотоны, движущиеся под углами к оси кристалл или трубки, выходят из активной среды через её боковую поверхность. Те же из фотонов, которые движутся вдоль оси, многократно отразятся от противоположных торцов, каждый раз вызывая вынужденное испускание вторичных фотонов. Поток фотонов будет лавинообразно нарастать. Многократно усиленный поток фотонов выходит через полупрозрачное зеркало, создавая строго направленный световой пучок большой интенсивности.

Первым газовым лазером непрерывного действия (1961) был лазер на смеси газов неона и гелия. В гелий-неоновом лазере накачка происходит в два этапа: гелий служит носителем энергии возбуждения, а неон даёт лазерное излучение. Электроны, образующиеся в газовом разряде внутри трубки, при столкновениях возбуждают атомы гелия, которые переходят в возбуждённое состояние. При столкновениях возбуждённых атомов гелия с атомами неона происходит возбуждение атомов неона. Электроны атомов неона переходят на верхнее возбуждённое состояние, а затем переходят на более низкое разрешённое состояние, при этом излучая лазерное излучение с длиной волны 0.6328 мкм.

Лазерное излучение обладает следующими свойствами:

- временная и пространственная когерентность. Время когерентности составляет ~10-3 с, что соответствует длине когерентности ~105 м, то есть на семь порядков выше, чем для обычных источников света;

- строгая монохроматичность (Dl< 10-11м);

- большая плотность потока энергии (рубиновый лазер имеет плотность потока энергии ~2×1010 Вт/м2;

- очень малое угловое расхождение в пучке. Например, при использовании специальной фокусировки луч лазера, направленный с Земли, дал бы на поверхности Луны световое пятно диаметром ~3 км (луч прожектора, для сравнения, осветил бы поверхность диаметром ~40000 км);

К.п.д. лазеров колеблется от 0.01 % (для гелий-неонового лазера) до 75 % (для лазера на стекле с неодимом).

Необычные свойства лазерного излучения находят в настоящее время широкое применение. Лазеры применяют для резки различных материалов, микросварки, пробивания отверстий в твёрдых материалах (алмаз). Также лазеры применяют в хирургии и вообще в медицине, для обнаружения дефектов в изделиях, для создания лазерного термоядерного синтеза, в голографии и т.д.

ТЕМА 10: Строение атома.

§ 30. Модели атома Томсона и Резерфорда.

Первая попытка создания на основе накопленных к тому времени экспериментальных данных модели атома принадлежит Дж. Дж. Томсону (1903). Согласно этой модели, атом представляет собой непрерывно заряженный положительным зарядом шар радиусом ~10-10 м, внутри которого около своих положений равновесия колеблются электроны; суммарный отрицательный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Впоследствии было показано, что такое представление ошибочно.

В развитии представлений о строении атома велико значение английского физика Резерфорда. Резерфорд, исследуя прохождение a-частиц в веществе (через золотую фольгу толщиной ~1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые a-частицы (примерно одна из 20000) резко отклоняются от первоначального направления. Так как электроны не могут существенно изменить движение столь тяжёлых частиц, как a-частицы, Резерфордом был сделан вывод, что значительное отклонение a-частиц обусловлено их взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие a-частицы, следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это, в свою очередь, означает, что положительный заряд сосредоточен в объёме, очень малом по сравнению с объёмом атома. На основании своих исследований Резерфорд в 1911 г. предложил планетарную модель атома. Согласно этой модели, вокруг положительного ядра, имеющего заряд Ze (Z – порядковый номер элемента в системе Менделеева, е – элементарный заряд), размер ~10-15 м и массу, практически равную, массе всего атома, движутся электроны по замкнутым орбитам. Вокруг ядра должно двигаться Zэлектронов. Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиуса r. При этом сила кулоновского взаимодействия между ядром и электроном сообщает электрону центростремительное ускорение. Второй закон Ньютона для электрона, движущегося по окружности под действием кулоновской силы, имеет вид:

где meи v– масса и скорость электрона на орбите радиуса r, eо – абсолютная диэлектрическая проницаемость. Уравнение содержит два неизвестных: rи v. Следовательно, существует бесчисленное множество значений радиуса и соответствующих ему значений скорости (а значит, и энергии), удовлетворяющих этому уравнению. Поэтому величины rи v (а значит, и энергия) могут меняться непрерывно, т.е. может испускаться любая, а не вполне определённая порция энергии. В этом случае спектры были бы сплошными. В действительности же опыт показывает, что атомы имею линейчатый (дискретный) спектр. Из вышеприведенного выражения следует, что при r» 10-10 м скорость движения электронов v» 106 м/с, а ускорение v2/r = 1022 м/c2. Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него. Таким образом, атом Резерфорда оказывается неустойчивой системой, что противоречит действительности.

Попытки построить модель атома в рамках классической физики не привели к успеху: модель Томсона была опровергнута опытами Резерфорда, планетарная же модель оказалась неустойчива. Преодоление возникших трудностей в построении модели атома связано с созданием квантовой теории атома.

§ 31. Постулаты Бора.

Первая попытка построить, качественно новую – квантовую теорию атома была предпринята датским физиком Нильсом Бором (1913). В основу своей теории Бор положил два постулата:

1) Первый постулат Бора (постулат стационарных состояний) – в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие следующему условию: mevrn = n(h/2p)

(n = 1, 2, 3, …), где me – масса электрона, v – скорость электрона на n-ой орбите радиуса rn;