Смекни!
smekni.com

Оптика и элементы атомной физики (стр. 1 из 19)

Оптика и элементы атомной физики

ТЕМА 1: Развитие взглядов на природу света. Законы геометрической оптики.

§ 1. Корпускулярная и волновая теория света.

Свет и его свойства люди начали изучать более 2000 лет назад, ещё в трактатах Евклида (300 г. до н. э.) формулируются законы прямолинейного распространения света и равенства углов падения и отражения. Однако слабостью подхода древних греков было отсутствие моделей, то есть, что же из себя представляет свет. Поэтому, в частности закон преломления, найденный ими экспериментально был записан неверно. Вместо отношения синусов (sini/sinr = const) они писали отношение углов (i/r = const), что, в принципе, верно для малых углов. Этот закон правильно сформулировал Декарт. Он же впервые пытался объяснить закон преломления, исходя из корпускулярных представлений о свете. Эту традицию, объяснять свет как поток корпускул, продолжил и развил Ньютон. Он применил, естественно, сформулированные им законы механики к доказательству законов отражения и преломления света. Он предположил, что при отражении корпускула света испытывает упругое соударение с зеркалом. Отсюда легко выводится тот факт, что угол падения равен углу отражения. Ньютону удалось также вывести и закон преломления - sini/sinr = const = n. Приведу его рассуждения. При упругом ударе корпускулы о поверхность нормальная составляющая её скорости vnменяет свой знак на противоположный (модуль сохраняется одинаковым), касательная составляющая остаётся неизменной. Поэтому получим:

Из рисунка видно, что tgi = vk/vn = vk/(-vn) = - vk/vn = - tgi’, или i = i’, то есть угол падения равен углу отражения. При выводе закона преломления Ньютон также воспользовался своей механикой. Обозначим скорость света в вакууме – c, а скорость света в некой среде – v. Поскольку предполагалось, что касательная составляющая скорости остаётся постоянной при пересечении границы раздела, то csini = vsinr.

Получим sini/sinr = v/c = const = n. Но поскольку i > r, то sini > sinrи, следовательно, v> r. Получилось, что sini/sinr = const – это правильно (соответствует сегодняшним знаниям), но v > c (т.е. скорость распространения света в среде больше, чем вакууме) – это неверно!

Продолжая исследования свойства света, Ньютон также показал, что белый свет (видимый глазом) является сложным и содержит цвета радуги, причём, каждый из которых характеризуется своей преломляемостью. Он это объяснил различием в массах корпускул разного цвета.

Наряду с корпускулярной концепцией света в XVIIв. возникла и начала развиваться волновая теория Гука-Гюйгенса. В "Трактате о свете" (1678 г.) Гюйгенс писал о свете, как о процессе распространения продольных деформаций (это было неверным предположением, поскольку свет – это поперечные колебания) в некоторой материальной среде, пронизывающей все тела - мировом эфире. Для анализа распространения этих деформаций Гюйгенс предложил простой метод, в основе которого лежит процесс распространения плоских волн в эфире. Рассмотрим доказательство закона преломления, приведенное Гюйгенсом:

Пусть фронт плоской волны AB, распространяющийся в вакууме со скоростью c, падает под углом iна границу со средой, в которой скорость распространения равна v. Спустя некоторый промежуток времени Dt, волна, распространяющаяся из точки B, пройдёт путь BC = cDtи достигнет границ раздела. За то же время волна, распространяющаяся от точки A в среде со скоростью v, пройдёт путь AD =vDt. Направление распространения фронта волны DCв среде характеризуется углом преломления r. Из рисунка видно, что сторона ACявляется одновременно гипотенузой двух прямоугольных треугольников и AC = c×Dt/sini = v×Dt/sinr. Отсюда, после сокращения Dtполучаем: sini/sinr = c/v = const =n (т.е., по сравнению с выражением, полученным Ньютоном, строго наоборот). Именно такое выражение соответствует современным представлениям о свете. То есть, Гюйгенс здесь оказался прав!

Более общая формулировка закона распространения света была дана Ферма (1601-1655). Согласно принципу Ферма, лучи света распространяются по пути, приводящему к цели в кратчайшее время. С его помощью также можно доказать справедливость законов отражения и преломления света. Следует отметить, что принцип Ферма не утратил своего значения до сих пор и применяется при выводе законов квантовой электродинамики.

И из корпускулярных и из волновых представлений о природе света можно вывести все законы геометрической оптики. Единственным противоречием этих двух подходов является то, что из корпускулярных представлений следует что v>c, а из волновых, наоборот, v<c (c - скорость распространения света в вакууме, v - скорость распространения света в среде). Верным оказался вывод Гюйгенса. Дальше продолжалось интенсивное изучение свойств света:

- в 1663 г. Гримальди впервые наблюдает явления дифракции и интерференции света;

- чуть позже Гюйгенс открывает поляризацию света, но не может её объяснить;

- в 1717 г. Ньютон показывает, что поляризация света может быть объяснена при предположении поперечности световых волн, хотя это противоречило волновой теории, так как считалось невозможным распространение упругой деформации поперечного сдвига;

- в 1756 г. Ломоносов вводит представление о "зыблющемся" или колебательном движении частиц эфира;

- Эйлер пишет формулу v = l/T = l×nи объясняет различием в частоте колебаний эфира различные цвета тел.

Борьба между сторонниками волновой и корпускулярной природе света доходила до курьёзов. Так, в 1818 г. сторонники корпускулярной теории выдвигают на конкурс Парижской Академии вопрос о дифракции света. Однако, премию получает Френель, давший объяснение дифракции, исходя из волновой теории. Он же доказывает возможность распространения поперечных колебаний, и в результате все явления поляризации были объяснены с волновой точки зрения.

То есть, наука о свете, в том числе - есть борьба идей.

§ 2. Электромагнитная теория света. Возникновение теории квантов.

Дальнейшее развитие взглядов на природу света связано с именами М.Фарадея, Д.Максвелла, М.Планка, А.Эйнштейна и, наконец, Ричарда Фейнмана.

В 1846 г. М. Фарадей наблюдал вращение плоскости поляризации света в телах, помещённых в магнитное поле, что указывало на сходство оптических и электрических явлений. Он же ввёл представление об электрических и магнитных полях, как о натяжениях эфира. Так в физике появилось понятие "электромагнитный эфир". Распространение электромагнитных полей в этом эфире должно было происходить как волновой процесс. Далее Максвелл в результате своих теоретических исследований пришёл к выводу, что скорость распространения электромагнитных волн в пустоте равна отношению электромагнитной и электростатической единиц тока (СГСЭ и СГСМ), что совпало с экспериментальным значением для скорости света ~300000 км/с. Более того, свет оказался только частью от всех имеющихся электромагнитных волн: радиоволны, инфракрасный свет, ультрафиолет, рентген, гамма - лучи. Согласно электромагнитной теории, созданной Максвеллом, скорость распространения электромагнитных волн в среде равна:

. Следовательно, показатель преломления среды, по определению равен:
. Однако у теории Максвелла здесь имеется ограничение - он полагал e и m числами постоянными, а на самом деле они зависят от длины волны и правильно писать формулу для n, например, нужно следующим образом:

. Кстати, здесь видно, что в споре корпускулярной и волновой теорий света, в данном случае, правы оказались сторонники волновой теории, которые считали скорость распространения света в среде меньшей, чем в вакууме. То есть, при рассмотрении распространения света в среде необходимо учитывать особенности строения вещества и закономерности взаимодействия с ним электромагнитного излучения. Об этом мы поговорим в следующих лекциях.

Несколько слов об открытиях Макса Планка и Альберта Эйнштейна. Волновая (электромагнитная) теория излучения не смогла объяснить распределение энергии в спектре абсолютно чёрного тела, кроме того, возникли трудности при объяснении закономерностей фотоэффекта. Выход из возникших затруднений нашёл выдающийся физик прошлого столетия - М. Планк. В 1901 г. он показал, что спектр абсолютно чёрного тела может быть объяснён, если предположить, что излучение испускается и поглощается не непрерывно, а порциями ("квантами"). Причём, энергия каждой порции излучения связана с частотой колебаний электромагнитной волны следующим соотношением: e = hn, где h = 6.62×10-34 дж×с, названная впоследствии постоянной Планка. А. Эйнштейн в 1905 г. объяснил закономерности фотоэффекта, введя представления о световых частицах - "квантах света" или "фотонах". Масса фотона, согласно Эйнштейну, была равна: m = hn/c2. Работы Планка и Эйнштейна привели к революции в физике и к созданию квантовой физики, в том числе к созданию Фейнманом современной теории электромагнетизма - квантовой электродинамики. Таким образом, длительный путь развития науки о свете привёл к современным представлениям о двойственной корпускулярно-волновой природе света. Приведенные выше формулы связывают корпускулярные характеристики излучения - массу, энергию, с волновыми - частотой колебаний, длиной волны.