Смекни!
smekni.com

Теоретическая механика (стр. 4 из 6)

Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях

nb определяется только одной проекцией
.

Ускорение точки

По определению ускорение характеризует изменение скорости, т.е. скорость изменения скорости.

Ускорения точки в векторной системе отсчета

На основании свойства производной

, (2.5 )

Вектор скорости может изменяться по модулю и направлению. Для определения приращения вектора

совместим начала векторов
(рис.2.6). Вектор ускорения направлен по линии приращения вектора скорости, т. е. В сторону искривления траектории.


Рис.2.6

Ускорение точки в координатной системе отсчета

Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат

ax=

; ay=
; az=
.

Полное ускорение в прямоугольной системе координат будет определяться выражением

а =

, (2.6)

Направляющие косинусы вектора ускорения

.

Ускорение точки в естественной системе отсчета

Приращение вектора скорости

(рис.2.7)
можно разложить на составляющие, параллельные осям естественной системы координат

, (2.7)

Разделив левую и правую части равенства (2.7 ) на dt, получим,

, (2.8)

где:

- тангенциальное ускорение, (2.9)

- нормальное ускорение, (вывод см .[1], п.43)

где R - радиус кривизны траектории в окрестности точки


Рис. 2.7

2.3. Кинематика твердого тела

В отличие от кинематики точки в кинематике твердых тел решаются две основные задачи:

- задание движения и определение кинематических характеристик тела в целом;

- определение кинематических характеристик точек тела.

Способы задания и определения кинематических характеристик зависят от типов движения тел.

В настоящем пособии рассматриваются три типа движения: поступательное, вращательное вокруг неподвижной оси и плоско-параллельное движение твердого тела

2.3.1. Поступательное движение твердого тела

Поступательным называют движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению (рис.2.8).

Доказана теорема: при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения (рис.2.8).

Вывод: Поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.


Рис. 2.8 Рис. 2.9

2.3.2 Вращательное движение твердого тела вокруг неподвижной оси.

Вращательным вокруг неподвижной оси называют движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.

Положение тела определяется углом поворота j (рис.2.9 ). Единица измерения угла – радиан. (Радиан - центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит 2p радиана.)

Закон вращательного движения тела вокруг неподвижной оси j = j(t). Угловую скорость и угловое ускорение тела определим методом дифференцирования

- угловая скорость, рад/с; (2.10)

- угловое ускорение, рад/с2 (2.11)

При вращательном движении тела вокруг неподвижной оси его точки, не лежащие на оси вращения, движутся по окружностям с центром на оси вращения.

Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точка М, то точка М будет описывать вокруг точки С окружность радиуса R(рис. 2.9). За время dt происходит элементарный поворот на угол

, при этом точка М совершит перемещение вдоль траектории на расстояние
.Определим модуль линейной скорости:

( 2.12 )

Ускорение точки М при известной траектории определяется по его составляющим, см.(2.8)


,

где:

;
.

Подставляя в формулы выражение (2.12) получим:

, .
, (2.13)

где:

- тангенциальное ускорение,

-нормальное ускорение.

2.3.3. Плоско - параллельное движение твердого тела

Плоскопараллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра.

В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.



Рис. 2.10 Рис. 2.11

Уравнения движения запишутся в виде:

ХА = ХА (t)

YА = YА (t) ( 2.14 )

jА = jА (t)

Кинематические характеристики полюса определяют из уравнений его движения.

Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А).

Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.

(2.15 )

(2.16 )

Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения

(2.17 )

Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.

(2.18)


Рис.2.12

Положение мгновенного центра вращения может быть определено на основании следующих свойств:

- вектор скорости точки перпендикулярен радиусу;

- модуль скорости точки пропорционален расстоянию от точки до центра вращения ( V= wR) ;

- скорость в центре вращения равна нулю.