Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень малые угловые смещения светила, а значит, и позволяют исследовать объекты с небольшими угловыми размерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом разрешающая способность радиоинтерферометра существенно увеличивается. Есть и другие технические устройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!
В феврале 1976 года советские и американские ученые осуществили интересный эксперимент— радиотелескопы Крымской и Хайсптекской (США) обсерваторий в этом опыте играли роль «глаз» исполинского радиоинтерферометра, а расстояние во много тысяч километров между этими обсерваториями было его базой. Так как база была очень велика и космические радио объекты наблюдались с разных континентов, достигнутая разрешающая способность оказалась поистине фантастической—одна десятитысячная доля секунды дуги! Под таким углом виден с Земли на Луне след от ноги космонавта! Позже к этим экспериментам присоединились и австралийские ученые, так что астрономы «взглянули» на космические радиоисточники сразу с трех континентов. Результаты оправдали затраченные усилия: в ядрах галактик и квазарах обнаружены взрывные процессы необычайной активности, причем в ряде случаев наблюдаемая скорость разлета космических облаков в квазарах, по-видимому, превосходит скорость света!
Таким образом, новая техника поставила перед наукой и новые проблемы принципиального характера. Достигнутая ныне разрешающая способность радиоинтерферометров — это еще не предел. В будущем, вероятно, радиотелескопы станут еще зорче.
Кстати сказать, и в оптической астрономии используют интерферометры. Их присоединяют к крупным телескопам, чтобы измерить реальные поперечники звезд. В обоих случаях интерферометры играют роль своеобразных «очков», позволяющих рассмотреть важные подробности в окружающей нас Вселенной.
Но оптические интерферометры по зоркости значительно уступают тем, которые употребляются ныне в радиоастрономии.
До сих пор речь шла о пассивном изучении космических радиоволн. Они улавливаются радиотелескопами, и задача астронома заключается лишь в том, чтобы наилучшим образом расшифровать эти сигналы, получить с их помощью как можно больше сведений о небесных телах. При этом исследователь никак не вмешивается в ход изучаемого им явления—он лишь пассивно наблюдает.
Та отрасль радиоастрономии, с которой мы теперь кратко познакомимся, имеет иной, если так можно выразиться, активный характер. Ее называют радиолокационной астрономией.
Слово «локация» означает определение местоположения какого-нибудь предмета. Если, например, для этого используется звук, то говорят о звуковой локации. Ею, как известно, широко пользуются современные мореплаватели. Особое устройство, называемое эхолотом, посылает в направлении ко дну океана короткие, но мощные неслышимые ультразвуки. Отразившись от дна, они возвращаются, и эхолот фиксирует время, затраченное звуком на путешествие до дна и обратно. Зная скорость распространения звука в воде, легко подсчитать глубину океана.
Подобным же образом можно измерить и глубину колодца или какого-нибудь ущелья. Громко крикнув, затем ждите, когда до вашего уха донесется эхо — отраженный звук. Учтя, что скорость звука в воздухе равна 337 м/с, легко вычислить искомое расстояние. Любопытно, что звуковая локация встречается и в мире животных. Летучая мышь обладает специальным естественным локационным органом, который, испуская неслышимые звуки, помогает мыши ориентироваться в полете. Эти ультразвуки поглощаются в толстом слое волос, и поэтому, не получив обратного звукового эха, летучая мышь воспринимает голову как «пустое место». Этим и объясняется, что летучая мышь иногда в темноте ударяется о головы людей, не прикрытые головным убором.
Когда говорят о «радиолокации», то под этим словом подразумевают определение местоположения предмета с помощью радиоволн. Радиолокационная астрономия — еще совсем молодая отрасль науки. Систематически радиолокационные наблюдения небесных тел начались всего пятьдесят лет назад. И все же достигнутые успехи весьма значительны. Очень интересны и дальнейшие перспективы этого активного метода изучения небесных тел.»Активного» потому, что здесь человек сам направляет в космос созданные им искусственные радиоволны и, наблюдая их отражения, может затем по собственному желанию видоизменить эксперимент.
Образно говоря, в радиолокационной астрономии человек «дотрагивается» до небесных тел созданным им радиолучем, а не пассивно наблюдает их излучение.
7.Радиолокация Луны и планет.
Еще в 1928 году, когда большинство радиолюбителей пользовались примитивными детекторными приемниками, советские ученые Л. И. Мандельштам и Н. Д. Папалекси рассматривали вопрос о посылке радиосигнала на Луну и приеме па Земле радиоэха. Тогда это была только смелая мечта, далеко опережавшая действительность. Но такова характерная черта больших ученых—их мысль опережает факты и видит то, что становится реальностью лишь в будущем.
В годы второй мировой войны Л. И. Мандельштам и Н. Д. Папалекси снова вернулись к занимавшей их идее. Теперь настали другие времена. Радиолокация прочно вошла в практику военной жизни, и радиолокаторы уверенно нащупывали невидимые цели.
Советские ученые на основе новых данных подсчитали, какова должна быть мощность радиолокатора и другие его качества, чтобы с его помощью можно было осуществить радиолокацию Луны. Научная ценность такого эксперимента была вне сомнений. Ведь до сих пор, чтобы определить расстояние до Луны, приходилось наблюдать ее положение среди звезд одновременно из двух достаточно удаленных друг от друга обсерваторий. Радиолокация решила бы ту же задачу при наблюдениях из одного пункта. Учитывая быстрый прогресс радиотехники, можно было ожидать, что радиолокационные измерения астрономических расстояний дадут результаты гораздо более точные, чем те, которые были получены в прошлом.
Трудности, однако, оказались огромными. Расчеты показали, что при прочих равных условиях мощность отраженного сигнала убывает обратно пропорционально четвертой степени расстояния до цели. Получалось, что лунный радиолокатор должен обладать примерно в тысячу раз большей чувствительностью, чем обычная радиолокационная станция береговой обороны, обнаруживавшая в те годы самолет неприятеля с расстояния в двести километров.
И все же проект казался довольно убедительным, и уверенность его авторов в успехе вскоре была оправдана фактами.
В начале 1946 года почти одновременно, но с различными установками, венгерские и американские радиофизики осуществили радиолокацию Луны.
На Луну посылались мощные импульсы радиоволн длиной 2,7 м. Каждый импульс имел продолжительность 0,25 секунды, причем пауза между импульсами составляла 4 секунды. Антенна радиолокатора была еще весьма несовершенна: она могла поворачиваться только вокруг вертикальной оси. Поэтому исследования велись лишь при восходе или заходе Луны, когда последняя находилась вблизи горизонта.
Приемное устройство радиолокатора уверенно зафиксировало слабый отраженный сигнал, лунное радиоэхо.
Путь до Луны и обратно радиоволны совершили всего за 2,6 сек, что, впрочем, при их невообразимо большой скорости не должно вызывать удивления. Точность этого первого радиоизмерения из-за несовершенства аппаратуры была еще очень низка, но все же совпадение с известными ранее данными было весьма хорошее.
Позже радиолокация Луны была повторена на многих обсерваториях, и с каждым разом со все большей точностью и, конечно, с большей легкостью.
Большие возможности радиолокации обнаружились при наблюдении так называемой либрации Луны. Под этим термином астрономы понимают своеобразные «покачивания» лунного шара, вызванные отчасти геометрическими причинами (условиями видимости), отчасти причинами физического характера. Благодаря либрации земной наблюдатель видит не половину, а около 60% лунного шара. Значит, либрация позволяет нам иногда «заглядывать» за край видимого лунного диска и наблюдать пограничные районы обратной стороны Луны.
При «покачивании», или либрации, Луны один ее край приближается к наблюдателю, а другой удаляется. Скорость этого движения очень мала — порядка 1м/сек, что меньше даже скорости пешехода. Но радиолокатор способен, оказывается, обнаружить и такие смещения.
Радиолокатор посылает на Луну волны определенной длины. Естественно, что и отраженный радиосигнал будет обладать той же длиной волны. Можно сказать, что радиоспектр отраженного сигнала представляет собой одну определенную «радиолинию».
Если бы Луна не «покачивалась» относительно земного наблюдения, радиоспектры посланного и отраженного импульса были бы совершенно одинаковыми. На самом же деле разница, хотя и небольшая, все же есть. Радиоволна, отразившаяся от того края Луны, который приближается к земному наблюдателю, по принципу Доплера будет иметь несколько большую частоту и, следовательно, меньшую длину, чем радиоволна, посланная на Луну. Для другого удаляющегося края Луны должен наблюдаться противоположный эффект. В результате «радиолиния» в радиоспектре отраженного импульса будет более широкой, растянутой, чем «радиолиния» посланного импульса. По величине расширения можно вычислить скорость удаления краев Луны. Этим же методом можно определить периоды вращения планет вокруг оси и скорости их движения по орбите.