Смекни!
smekni.com

Радиотехника и космос история и современность (стр. 4 из 7)

Радиоинтерферометры гораздо «зорче» обычных радиотелескопов, так как они реагируют на очень ма­лые угловые смещения светила, а значит, и позволя­ют исследовать объекты с небольшими угловыми раз­мерами. Иногда радиоинтерферометры состоят не из двух, а из нескольких радиотелескопов. При этом раз­решающая способность радиоинтерферометра сущест­венно увеличивается. Есть и другие технические уст­ройства, которые позволяют современным «радио глазам» астрономов стать очень «зоркими», гораздо более зоркими, чем невооруженный человеческий глаз!

В феврале 1976 года советские и американские ученые осуществили интересный эксперимент— радио­телескопы Крымской и Хайсптекской (США) обсерва­торий в этом опыте играли роль «глаз» исполинского радиоинтерферометра, а расстояние во много тысяч километров между этими обсерваториями было его базой. Так как база была очень велика и космические радио объекты наблюдались с разных континентов, до­стигнутая разрешающая способность оказалась поис­тине фантастической—одна десятитысячная доля се­кунды дуги! Под таким углом виден с Земли на Луне след от ноги космонавта! Позже к этим эксперимен­там присоединились и австралийские ученые, так что астрономы «взглянули» на космические радиоисточ­ники сразу с трех континентов. Результаты оправдали затраченные усилия: в ядрах галактик и квазарах обнаружены взрывные процессы необычайной актив­ности, причем в ряде случаев наблюдаемая скорость разлета космических облаков в квазарах, по-видимо­му, превосходит скорость света!

Таким образом, новая техника поставила перед наукой и новые проблемы принципиального характе­ра. Достигнутая ныне разрешающая способность ра­диоинтерферометров — это еще не предел. В будущем, вероятно, радиотелескопы станут еще зорче.

Кстати сказать, и в оптической астрономии исполь­зуют интерферометры. Их присоединяют к крупным телескопам, чтобы измерить реальные поперечники звезд. В обоих случаях интерферометры играют роль своеобразных «очков», позволяющих рассмотреть важ­ные подробности в окружающей нас Вселенной.

Но оптические интерферометры по зоркости зна­чительно уступают тем, которые употребляются ныне в радиоастрономии.

6.«Радиоэхо» в астрономии.

До сих пор речь шла о пассивном изучении космиче­ских радиоволн. Они улавливаются радиотелескопами, и задача астронома заключается лишь в том, чтобы наилучшим образом расшифровать эти сигналы, полу­чить с их помощью как можно больше сведений о не­бесных телах. При этом исследователь никак не вме­шивается в ход изучаемого им явления—он лишь пассивно наблюдает.

Та отрасль радиоастрономии, с которой мы теперь кратко познакомимся, имеет иной, если так можно выразиться, активный характер. Ее называют радио­локационной астрономией.

Слово «локация» означает определение местополо­жения какого-нибудь предмета. Если, например, для этого используется звук, то говорят о звуковой лока­ции. Ею, как известно, широко пользуются современ­ные мореплаватели. Особое устройство, называемое эхолотом, посылает в направлении ко дну океана ко­роткие, но мощные неслышимые ультразвуки. Отра­зившись от дна, они возвращаются, и эхолот фикси­рует время, затраченное звуком на путешествие до дна и обратно. Зная скорость распространения звука в воде, легко подсчитать глубину океана.

Подобным же образом можно измерить и глубину колодца или какого-нибудь ущелья. Громко крикнув, затем ждите, когда до вашего уха донесется эхо — отраженный звук. Учтя, что скорость звука в воздухе равна 337 м/с, легко вычислить искомое расстояние. Любопытно, что звуковая локация встречается и в мире животных. Летучая мышь обладает специальным естественным локационным органом, который, испуская неслышимые звуки, помогает мыши ориентироваться в полете. Эти ультразвуки поглощаются в толстом слое волос, и поэтому, не получив обратного звукового эха, летучая мышь воспринимает голову как «пустое место». Этим и объясняется, что летучая мышь иногда в темноте ударяется о головы людей, не прикрытые головным убором.

Когда говорят о «радиолокации», то под этим словом подразумевают определение местоположения предмета с помощью радиоволн. Радиолокационная астрономия — еще совсем молодая отрасль науки. Систематически радиолокационные наблюдения небесных тел начались всего пятьдесят лет назад. И все же достигнутые успехи весьма значительны. Очень интересны и дальнейшие перспективы этого активного метода изучения небесных тел.»Активного» потому, что здесь человек сам направляет в космос созданные им искусственные радиоволны и, наблюдая их отражения, может затем по собственному желанию видоизменить эксперимент.

Образно говоря, в радиолокационной астрономии человек «дотрагивается» до небесных тел созданным им радиолучем, а не пассивно наблюдает их излучение.

7.Радиолокация Луны и планет.

Еще в 1928 году, когда большинство радиолюбителей пользовались примитивными детекторными приемни­ками, советские ученые Л. И. Мандельштам и Н. Д. Папалекси рассматривали вопрос о посылке ра­диосигнала на Луну и приеме па Земле радиоэха. Тогда это была только смелая мечта, далеко опере­жавшая действительность. Но такова характерная черта больших ученых—их мысль опережает факты и видит то, что становится реальностью лишь в будущем.

В годы второй мировой войны Л. И. Мандель­штам и Н. Д. Папалекси снова вернулись к занимав­шей их идее. Теперь настали другие времена. Радио­локация прочно вошла в практику военной жизни, и радиолокаторы уверенно нащупывали невидимые цели.

Советские ученые на основе новых данных подсчи­тали, какова должна быть мощность радиолокатора и другие его качества, чтобы с его помощью можно было осуществить радиолокацию Луны. Научная цен­ность такого эксперимента была вне сомнений. Ведь до сих пор, чтобы определить расстояние до Луны, приходилось наблюдать ее положение среди звезд од­новременно из двух достаточно удаленных друг от друга обсерваторий. Радиолокация решила бы ту же задачу при наблюдениях из одного пункта. Учитывая быстрый прогресс радиотехники, можно было ожи­дать, что радиолокационные измерения астрономиче­ских расстояний дадут результаты гораздо более точ­ные, чем те, которые были получены в прошлом.

Трудности, однако, оказались огромными. Расчеты показали, что при прочих равных условиях мощность отраженного сигнала убывает обратно пропорциональ­но четвертой степени расстояния до цели. Получалось, что лунный радиолокатор должен обладать примерно в тысячу раз большей чувствительностью, чем обыч­ная радиолокационная станция береговой обороны, обнаруживавшая в те годы самолет неприятеля с рас­стояния в двести километров.

И все же проект казался довольно убедительным, и уверенность его авторов в успехе вскоре была оп­равдана фактами.

В начале 1946 года почти одновременно, но с раз­личными установками, венгерские и американские радиофизики осуществили радиолокацию Луны.

На Луну посылались мощные импульсы радиоволн длиной 2,7 м. Каждый импульс имел продолжитель­ность 0,25 секунды, причем пауза между импульсами составляла 4 секунды. Антенна радиолокатора была еще весьма несовершенна: она могла поворачиваться только вокруг вертикальной оси. Поэтому исследова­ния велись лишь при восходе или заходе Луны, когда последняя находилась вблизи горизонта.

Приемное устройство радиолокатора уверенно за­фиксировало слабый отраженный сигнал, лунное ра­диоэхо.

Путь до Луны и обратно радиоволны совершили всего за 2,6 сек, что, впрочем, при их невообразимо большой скорости не должно вызывать удивления. Точность этого первого радиоизмерения из-за несовер­шенства аппаратуры была еще очень низка, но все же совпадение с известными ранее данными было весьма хорошее.

Позже радиолокация Луны была повторена на многих обсерваториях, и с каждым разом со все боль­шей точностью и, конечно, с большей легкостью.

Большие возможности радиолокации обнаружи­лись при наблюдении так называемой либрации Луны. Под этим термином астрономы понимают своеобраз­ные «покачивания» лунного шара, вызванные отчасти геометрическими причинами (условиями видимости), отчасти причинами физического характера. Благодаря либрации земной наблюдатель видит не половину, а около 60% лунного шара. Значит, либрация позволя­ет нам иногда «заглядывать» за край видимого лун­ного диска и наблюдать пограничные районы обрат­ной стороны Луны.

При «покачивании», или либрации, Луны один ее край приближается к наблюдателю, а другой уда­ляется. Скорость этого движения очень мала — по­рядка 1м/сек, что меньше даже скорости пешехода. Но радиолокатор способен, оказывается, обнаружить и такие смещения.

Радиолокатор посылает на Луну волны опре­деленной длины. Естественно, что и отраженный радиосигнал будет обладать той же длиной волны. Можно сказать, что радиоспектр отраженного сигнала представляет собой одну определенную «радиолинию».

Если бы Луна не «покачивалась» относительно земного наблюдения, радиоспектры посланного и отраженного импульса были бы совершенно одинаковыми. На самом же деле разница, хотя и небольшая, все же есть. Радиоволна, отразившаяся от того края Луны, который приближается к земному наблюдателю, по принципу Доплера будет иметь несколько большую частоту и, следовательно, меньшую длину, чем радиоволна, посланная на Луну. Для другого удаляющегося края Луны должен наблюдаться противоположный эффект. В результате «радиолиния» в радиоспектре отраженного импульса будет более широкой, растянутой, чем «радиолиния» посланного импульса. По величине расширения можно вычислить скорость удаления краев Луны. Этим же методом можно определить периоды вращения планет вокруг оси и скорости их движения по орбите.