Условия на холодной границе
(1.29)На границе зоны прогрева и горения (х = 0) в качестве граничного условия запишем уравнение теплового баланса между зонами прогрева и реакции
(1.30)Здесь Tiи Tsi - температура газа и частиц в точке воспламенения,
г - время горения частиц, T∞ - адиабатическая температура сгорания. Профиль температуры газа в зоне горения полагаем линейным, так что - средний кондуктивный поток тепла в предпламенную зону. В качестве условия воспламенения берем Tsi=Ts* , (Ts* - температура частиц в режиме самовоспламенения). Можно показать, что выбор иного условия воспламенения не сказывается существенно на получаемых результатах, вместе с тем выбранное условие существенно упрощает задачу. Решая (1.27 – 1.30) приходим к следующему трансцендентному уравнению:где
(1.31)Из (1.31) легко получить предельные выражения для чисто кондуктивного и радиационного механизмов горения. Полагая А = 0 (q0 = 0) и vs= 0, имеем для кондуктивного механизма
Пренебрегая теплопроводностью (
), получим для v выражение.1.3 Распространение пламени в гибридных смесях.
В работе [4] исследовано распространение фронта горения по газовзвеси, в которой экзотермические химические реакции идут в газовой фазе и на поверхности частиц дисперсной фазы с одним из компонентов газовой фазы. Такие процессы, в частности, происходят при горении метановоздушной смеси со взвешенными в ней частицами угольной пыли.
Сформулирована физико-математическая модель распространения пламени по газовзвеси, состоявшей из смеси газов (окислителя, горючего и инертного) и частиц конденсированного вещества, гетерогенно реагирующих с окислителем. На основе численного анализа получены зависимости скорости распространения пламени от параметров, характеризующих массовую концентрацию частиц, их размер, энергию активации гетерогенной реакции на поверхности частиц, тепловой эффект гетерогенной реакции и массообмен частиц. В зависимости от соотношения параметров дисперсной фазы скорость распространения пламени в такой среде может увеличиваться в несколько раз по сравнению со скоростью пламени в незапыленной газовой смеси либо уменьшаться, и тогда влияние частиц аналогично влиянию инертной дисперсной фазы.
Рассматривается полубесконечная газовзвесь, состоящая из смеси газов (окислителя, горючего и инертного), в которой равномерно взвешены мелкие частицы вещества, способного гетерогенно реагировать с одним из компонентов газовой смеси. Предполагается, что реакция на поверхности частиц идёт с окислителем; газодисперсная смесь неподвижна; частицы имеют одинаковый размер и сферическую форму; теплообмен между частицами и газом происходит по закону Ньютона; скорость химических реакций в газе и на поверхности частиц от температуры по закону Аррениуса; продуктами гетерогенной реакции на частицах являются газы; все химические реакции идут без возрастания объема; термическим расширением газовой смеси пренебрегаем; на границе области х=0 расположен источник воспламенения (горячая стенка), а газовзвесь расположена на расстоянии l от горячей стенки.
Математическая модель горения такой смеси построена на основе теплодиффузионной модели горения газов [2], дополненной уравнениями энергии и выгорания дисперсной фазы с учётом межфазного теплового массового взаимодействия. Подобные модели, учитывающие двухтемпературность среды, успешно применяли для моделирования самовоспламенения [13] и зажигания газовзвесей [14], для исследования вопросов пожаротушения и огнепреграждения [15]. С учётом сделанных допущений уравнения, описывающие процессы в такой смеси, имеют следующий вид: уравнение энергии газовой фазы-
(1.32)уравнение энергии частицы-
(1.33)уравнения сохранения массы горючего и окислителя в газовой фазе-
(1.34)
уравнение изменения массы частицы-
(1.36)уравнение сохранения массы среды-
(1.37)
Начальные условия:
(1.38)граничные условия:
(1.39)Здесь t – время; х - координата; Т- температура; ρ- плотность; с- удельная теплоемкость; Qpg,0 –теплота химической реакции в газе, q – на поверхности частиц; Е – энергия активации химической реакции; k0, k0,k- предэкспоненциальные множители в законе Аррениуса для гомогенной и гетерогенной реакций;m - масса частицы; N – число частиц в единице объема; λ, α, βm, D – коэффициенты теплопроводности, теплообмена, массообмена, диффузии; R- универсальная газовая постоянная; Y1,Y2- концентрации горючего и окислителя в газовой фазе; NuD- диффузионное число Нуссельта; af – стехиометрический коэффициент. Индексы: 1- горючий газ, 2- окислитель, in- инертная часть исходной газовой смеси и продукты горения, g- газовая фаза, k-дисперсная фаза, 0- начальные условия.
Таким образом, построена математическая модель горения газовзвеси, состоящей смеси газообразного окислителя и горючего и взвешенных в ней частиц, гетерогенно реагирующих с газообразным окислителем. Проведенное численное исследование влияния параметров дисперсной фазы на стационарную скорость распространения пламени по газовзвеси показало, что в зависимости от соотношения параметров газовой и дисперсной фаз возможны случаи, когда наличие химически активной дисперсной фазы увеличивает скорость распространения волны горения в несколько раз по сравнению со скоростью фронта горения в чистой газовой смеси. Это может быть причиной перехода горения такой смеси в детонацию. При некоторых соотношениях параметров дисперсной фазы ее влияние аналогично влиянию инертной дисперсной фазы.
Постановка задачи.
Исходя из вышеизложенного, в нашей работе ставятся следующие цели:
1. Модифицировать установку по изучению распределения пламени в пылях для исследования процессов горения гибридных смесей метан-воздух-уголь.
2. Провести опыты с различными концентрационными соотношениями метана и угля.
3. Сделать выводы о роли угля (как экзотермической или инертной добавки) в процессах горения таких гибридных смесей.