Смекни!
smekni.com

Автоматизация энергоблока АЭС с ВВЭР-1000 (стр. 6 из 19)

Рис. 2.5 - Регулирование уровня и давления в деаэраторе

Регулирование уровня в деаэраторах.

Компенсация потерь рабочего тела в пароводяном контуре производится подпиткой химически очищенной водой (ХОВ), которая обычно осуществляется в конденсатор турбины. Сигналом уменьшения массы воды в контуре является снижение уровня в деаэраторе, так как масса рабочего тела поддерживается практически постоянной. Регулятор уровня в деаэраторе 11 (рисунок 2.5.) получает сигнал от уровнемера 12 и воздействует на клапан 73, регулирующий подачу ХОВ в конденсатор турбины. При этом регулирующее воздействие задерживается, так как увеличение расхода ХОВ сначала приводит к увеличению уровня в конденсаторе, что воспринимается регулятором 6 (рисунок 2.5), и только в результате его работы увеличивается подача воды в питательную линию 9. Однако жестких технологических требований к динамическим отклонениям уровня в деаэраторе не предъявляются. Изменение уровня в допустимых пределах происходит за длительное время (даже при полном прекращении подачи питательной воды в деаэратор падение уровня продолжается не менее 5 мин). Поэтому описанная схема регулирования, несмотря на ее невысокое быстродействие, получила всеобщее распространение.

Для получения характеристик системы регулирования уровня в парогенераторах ПГВ-1000 необходимо получить вид передаточных функций системы по каналам регулирования «расход питательной воды -уровень в парогенераторе» и «расход пара - уровень в парогенераторе». Для этого необходимо построить математическую модель объекта регулирования по заданным каналам.

2.1.5 Приборы и средства теплотехнического контроля параметров II‑го контура АЭС с ВВЭР-1000

Основными контролируемыми параметрами, рассматриваемыми в проекте являются: давление пара в отборах, давление в деаэраторе, давление питательной воды и конденсата, температура питательной воды, температура конденсата, расход питательной воды, расход пара на турбину, уровень в подогревателях низкого давления, уровень в деаэраторе, уровень в подогревателях высокого давления и уровень в парогенераторе. Для измерения данных технологических параметров применяются различные средства измерений. Для регулирования температуры, используются термопары, имеющие НСХ типа ХК (хромель-капель), диапазон измерения -50..+400 С0. Для измерения давления применяются датчики измерения избыточного давления «Сапфир 22ДИ». Для измерения расхода питательной воды используется диафрагма, совместно с измерительным преобразователем разности давлений «Сапфир 22ДД». Для измерения уровня в парогенераторе, ПНД, ПВД и деаэраторе, применяются стандартные уравнительные сосуды, однокамерные совместно с измерительными преобразователями разности давлений «Сапфир 22ДД». Данное оборудование изготавливается на ЗАО «Манометр», располагающийся в городе Москве. Сигналы от термопар обрабатываются непосредственно Ремиконтом-310. При этом нет необходимости для применение промежуточных преобразователей. Сигналы от датчиков измерения избыточного давления и разности давлений, через преобразователи «Сапфир 22ДД» и «Сапфир 22 ДИ» заводятся в программируемые микропроцессорные контроллеры. Спецификация на средства измерений приведена в Приложении 1.

2.1.6 Описание АСУ ТП на базе ТПТС53

В проекте рассматриваются вопросы АСУ ТП энергоблока на базе ТПТС53 (TELEPERM ME). 3а счет новой производственной технологии «монтаж на поверхность» в ТПТС53 реализована самая перспективная структура контроллерных систем - структура «интеллектуальных» модулей. Её смысл состоит в том, чтобы основные функции обработки и управления передать микропроцессорам, установленным в каждом модуле. Фактически, отдельные функциональные модули, обладают способностью принимать и обрабатывать разнообразные сигналы, выдавать как аналоговые, так и дискретные воздействия, и осуществлять автоматическое управление технологическим процессом. Кроме того, обеспечена возможность связи между функциональными модулями через информационные шины в пределах одного шкафа, между шкафами и с внешними устройствами через несколько различных системных шин.

Таким образом, ТПТС53 представляет собой многопроцессорную систему с децентрализованным (или распределенным) управлением. Такое построение обеспечивает существенные преимущества перед традиционными централизованными информационно - управляющими системами.

Концепция автоматизации характеризуется иерархической структурой обработки информации (рис.2.6) и функциональным (технологическим) разделением устройств автоматизации для обработки измеряемых величин, дискретного управления и регулирования по функциональным зонам.

Щит управления подразделяется на две рабочие зоны:

1) управление технологическим процессом (ТП);

2) техническое сопровождение.

Техническое сопровождение процесса

Рисунок 2.6 - Структура АСУ ТП на электростанции

Управление технологическим процессом включает в себя оперативный контроль, управление и мониторинг технологического процесса и устройств автоматизации.

Техническое сопровождение охватывает общий контроль за работой установки со стороны начальника смены и инженеров АЭС, обслуживание АСУ ТП и документирование.

ТПТС53 включает технические и программные средства для реализации всех функций, необходимых для автоматизации процессов на AЭC: сбора и обработки технологических данных, автоматического регулирования и дискретного управления, защит и блокировок, вычисления и оптимизации, а также для контроля, сигнализации, оперативного управления ТП с использованием мониторов операторских станций и, при необходимости, традиционных элементов управления.

В систему заложена возможность проектирования надежности установки. ТПТС53 обеспечивает возможность резервировании аппаратных средств. При этом, в зависимости от предъявленных требований, возможны различные варианты построения резервированных структур. Таким образом, шинная система, системы автоматизации, обслуживания и наблюдения могут быть дополнены резервными системами.

Преимущества ТПТС53 перед традиционными контроллерами:

- увеличение вычислительной мощности системы пропорционально увеличению числа контролируемых параметров;

- наличие микропроцессора в каждом функциональном модуле обеспечивает возможность введения процедур глубокой диагностики модулей и внешних цепей.

Таблица 2.1 - Расширение функциональных возможностей АСУ ТП на базе ТПТС53

Существенное повышение объема автоматизации Принципиальное изменение функций оператора
Функция Новое качества: Основа.
Автоматическое регулирование Полный охват регуляторов. Любой требуемый алгоритм Надежность аппаратуры
логическое управление Пошаговая логика и сложные блокировки для всех узлов с эа Диагностика периферии
защиты Автоматический ввод – вывод, всесторонний контроль. Сигнализация и регистрация. Диагностика и анализ аппаратных и алгоритмических нарушений
Существенное повышение объема автоматизации Принципиальное изменение функций оператора
Функция Новое качества: Основа.
Контроль и сигнализация Разнообразие и удобство предоставления. Сигнализация и быстрая локализация любого нарушения. Высокоразвитый и разнообразный интерфейс оператора.
Дистанционное управление через монитор. Вся эа и привода. Теплотехническое и электротехническое оборудование. Удобство контроля выполнения команд. Блокировка ошибочных действий. Высокоразвитое базовое программное обеспечение
Расчеты. Регистрация. Архивы. Протоколы. Быстродействие, точность, широта задач, простота программирования. В оптимально – целесообразном объеме. Стандартизация решений

2.1.7 Система автоматизации AS 220 EA

Основной частью (ядром) АСУ ТП на базе ТПТС53 является система автоматизации.

AS 220 EA — система автоматизации со структурируемыми автономными функциональными блоками, предусматривающая гибкое резервирование, при этом допускается полное или выборочное резервирование модулей по схеме «1 из 2, горячий резерв». «Горячее» резервирование подразумевает отслеживание состояния основного модуля резервным, проведение взаимной диагностики и безударное переключение на резервный модуль в случае неполадки основного. Все задачи выполняются в AS 220 EA распределёно автономными функциональными модулями, имеющими свои вычислительные возможности. Это позволяет достичь очень высокого коэффициента готовности и живучести системы.

Основные свойства системы автоматизации AS 220 EA:

- распределённая архитектура системы;

- без центрального процессора,

- без центральной памяти;

- энергонезависимая память;

- отсутствие ограничений по «памяти» за счёт использования распределённой обработки;

- быстрая обработка за счёт децентрализованной структуры;

- высокая готовность вследствие использования горячего резерва по схеме «1 из 2»;

- малое число типов модулей;

- простота программирования и обслуживания с использованием «технологического» языка;

- обеспечение всех функций управления, сбора и обработки информации;

- высокая готовность программного обеспечения для решения задач в энергетике.

2.1.8 Область применения