Смекни!
smekni.com

Магнитное поле 3 (стр. 2 из 5)

В дальнейшем экспериментально исследовалось действие на магнитную стрелку электрического тока, протекающего по проводникам самой различной формы. Во всех случаях проводники с током оказывали ориентирующее действие на магнитную стрелку. Таким образом, можно сделать следующий вывод: при прохождении по проводнику электрического тока вокруг проводника возникает магнитное поле, действующее на помещенную в это поле магнитную стрелку.

Непосредственное измерение действия магнитного поля движущихся электронов на магнитную стрелку было произведено в 191] г. Абрам Федорович Иоффе (1880-1960). Принципиальная схема его установи.2 приведена на рис.5. Внутри стеклянной трубки М был создан высокий вакуум.

Магнитное поле 3

Электроны, вылетавшие из катода К, который нагревался током от батареи накала Бм, ускорялись электрическим полем, созданным между катодом К и анодом А батареей Ба.

Магнитное поле 3

В центре О анода трубки имелось небольшое отверстие, через которое проходила часть электронов. Узкий пучок электронов в пространстве за анодом попадал в цилиндр Фарадея Р, соединенный через гальванометр С с положительным полюсом батареи Ба. В средней части трубки по обе стороны электронного пучка располагались две одинаковые легкие магнитные стрелки N-8, антипараллельные друг другу. Стрелки были скреплены между собой легким кольцом, свободно охватывающим трубку. Вся эта система была подвешена на упругой нити. Применение двух параллельных и противоположно направленных магнитных стрелок (такая система называется астатической) позволило исключить влияние магнитного поля Земли, так как его действия на обе стрелки взаимно уничтожаются. При движении в трубке пучка электронов возникает магнитное поле, которое действовало на обе стрелки так, как показано на рисунке. Угол закручивания нити О, регистрировавшийся по смещению светового зайчика, отраженного от зеркальца 3, позволял судить о силе, с которой магнитное поле электронного пучка действовало на магнитные стрелки. Сила тока в трубке измерялась гальванометром С. Заменив катодную трубку М прямолинейным проводником, по которому шел ток такой же силы, как и в трубке, Иоффе установил, что угол закручивания нити не изменился. Таким образом, было доказано, что свободные электронные пучки по своему магнитному действию эквивалентны токам в проводниках.

Рядом исследований, в числе которых необходимо отметить опыты Александра Александровича Эйхенвальда (1864-1944), было доказано, что магнитное действие конвекционных токов, образованных движением в пространстве заряженных тел и поляризованных диэлектриков, также подобно магнитному действию токов проводимости. Упрощенная схема прибора Эйхенвальда приведена на рис.6. Внутри металлического корпуса находился сплошной диск 1, который мог вращаться вокруг оси. Диск был изготовлен из материала, обладающего высокими диэлектрическими свойствами. На этот диск по внешней его окружности наклеивался станиолевый ободок, представляющий собой незамкнутое кольцо. Корпус прибора и станиолевый ободок играли роль двух обкладок конденсатора, емкость С которого была предварительно измерена. Конденсатор заряжался от электростатической машины до разности потенциалов А.</> между обкладками. При этом заряд </ обкладки равнялся:

Я = С- Д(»_ (1)

Диск 1 приводился в быстрое вращение вокруг оси. Сила возникающего при этом конвекционного тока /,,. равна:

Iк = ц п = С■ А<р п ^2)

где и - число оборотов диска за единицу времени.

О магнитном поле конвекционного тока можно было судить по его действию на легкую магнитную стрелку 2, подвешенную на упругой нити внутри защитного металлического кожуха со стеклянным окошечком 4. Угол поворота стрелки определялся по смещению отраженного от зеркальца 3 светового луча, который падал на шкалу (она на рисунке не изображена). Затем диск 1 устанавливался неподвижно, и через отверстие в корпусе прибора к концам станиолевого ободка подводился ток от внешнего источника. Ток проводимости I в ободке подбирался таким, чтобы отклонение магнитной стрелки было равно ее отклонению при конвекционном токе 1К. Опыты показали, что 1 = 1«. Этим было доказано, что конвекционные токи по своему магнитному действию подобны токам проводимости. Рассмотренные опыты показывают, что вокруг всякого движущегося заряда, будь то электрон, ион или заряженное тело, помимо электрического поля, существует также и магнитное поле. Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Следовательно, взаимодействие двух движущихся друг относительно друга электрических зарядов, т.е. взаимодействие между проводниками с током, не исчерпывается их электрическим взаимодействием, так как между ними существует еще и магнитное взаимодействие.

Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами. Причиной возникновения сил магнитного взаимодействия является магнитное поле, которое создается движущимися зарядами и постоянными магнитами.

Магнитное поле представляет собой особую форму материи, посредством которой осуществляется

взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Магнитное поле является формой электромагнитного поля, оно непрерывно в пространстве, порождается движущимися зарядами и обнаруживается по действию на движущиеся заряды.

Термин «магнитное поле» в 1 845г. ввел Фарадей. Экспериментальным доказательством реальности магнитного, так же как и электрического поля, является факт существования электромагнитных волн.

Из опыта Эрстеда следует, что магнитное поле имеет направленный характер и должно характеризоваться векторной величиной. Эту величину принято обозначать буквой В. Логично было бы по аналогии с напряженностью электрического поля Е назвать В напряженностью магнитного поля. Однако по историческим причинам основную силовую характеристику магнитного поля назвали магнитной индукцией. Название же «напряженность магнитного поля» оказалось присвоенным вспомогательной величине Н, аналогичной вспомогательной характеристике О электрического поля. Вектор магнитной индукции В является основной характеристикой магнитного поля. Рассмотрим один из способов определения направления вектора В в различных точках магнитного поля. Условились считать, что вектор магнитной индукции В в произвольной точке поля совпадает по направлению с силой, которая действует на северный полюс бесконечно малой магнитной стрелки, помещенной в эту точку поля. Бесконечно малая магнитная стрелка не может своим присутствием искажать то поле, в которое она вносится. Сила, действующая со стороны магнитного поля на южный полюс стрелки, направлена в сторону, противоположную вектору В. Оба полюса такой магнитной стрелки лежат в бесконечно близких точках поля, так что силы, действующие на оба полюса, численно равны друг другу. Следовательно, в магнитном поле на магнитную стрелку действует пара сил, поворачивающая ее таким образом, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля, т.е. с направлением вектора В.

Подобно тому, как электрические поля графически изображаются с помощью электрических силовых линий, магнитные поля изображаются с помощью линий магнитной индукции (или магнитных силовых линий). Линии магнитной индукции - это линии, касательные к которым в данной точке совпадают по направлению с вектором В в этой точке. Линии магнитной индукции можно сделать «видимыми» с помощью железных опилок. Если на стеклянную пластинку, через которую пропущен прямой проводник с током, насыпать железных опилок и слегка постучать по пластинке, то железные опилки расположатся вдоль силовых линий (рис.7).

Из опытов следует, что линии магнитной индукции прямого

проводника с током представляют концентрические окружности, лежащие в плоскости, перпендикулярной току. Центр этих окружностей находится на оси проводника. С помощью железных опилок можно получить изображение линий магнитной индукции проводников с током любой формы. Линии магнитной индукции всегда замкнуты и охватывают проводники с токами. Для сравнения магнитного поля с электростатическим полезно напомнить, что силовые линии электростатического поля разомкнуты. Они начинаются на положительны;, зарядах, оканчиваются на отрицательных и вблизи от заряженного проводника направлены перпендикулярно к его поверхности.

Магнитное поле 3

Магнитное поле 3

Направление линий магнитной индукции связано с направлением тока в проводнике. Направление силовых линий магнитного поля, создаваемого проводником с током, определяется по правилу буравчика (рис.7): если правовинтовой буравчик ввинчивать по направлению тока в проводнике, то направление движения его рукоятки укажет направление линий магнитной индукции. Из рис.8 видно, что магнитное поле вне соленоида, т. е. длинной катушки с током, подобно магнитному полю полосового магнита. Северный полюс магнита (рис.8,а) совпадает с тем концом соленоида, из которого ток в витках виден идущим против часовой стрелки (рис.8,6). Магнитное