Смекни!
smekni.com

Автономные береговые электроэнергетические системы (стр. 2 из 2)

4. Определение сечений проводов сооружаемых ЛЭП

Суммарное сечение (F) проводов фазы проектируемой ВЛ составляет:

,

где IP-расчетный ток, А;

jH-нормированная плотность тока, А/мм2.

Для заданного числа использования максимальной нагрузки 4500 ч jH= 1,1 А/мм2.

Значение IP определяется по выражению:

где I5 - ток линии на пятый год её эксплуатации в нормальном режиме;

- коэффициент, учитывающий изменение нагрузки по годам эксплуатации линии. Для линий 110…220 кВ значение
может быть принято равным 1,05, что соответствует математическому ожиданию этого коэффициента в зоне наиболее часто встречающихся темпов роста нагрузки.

- коэффициент, учитывающий число часов использования максимальной нагрузки ВЛ (Тmax), а коэффициент Км отражает участие нагрузки ВЛ в максимуме энергосистемы.

Рассчитываем коэффициенты Км для нагрузок новых подстанций (табл.7).

Таблица 7

Под - стан - ция Активная мощность подстанции Р Состав различных видов потребителей новых п/ст.,%, для Км, о. е. Км
Освещение Пром. трёх-сменная Пром. двух-сменная Пром. одно-сменная Электриф. транспорт С/х
1 0,85 0,75 0,15 1 0,75
ПС-1 61 20 20 15 15 30 0 0,805
ПС-2 30 20 20 40 10 - 10 0,76
ПС-3 14 40 15 - - - 45 0,865

Результаты расчетов сечений проводов новых ЛЭП сведены в (табл.8).

Таблица 8

Расчет сечений проводов ЛЭП варианта радиально-магистральной сети

ВЛ Р, МВт Q, МВАр Uном, кВ Цепей I5, А
Iрасч, А F, мм2 Fстанд, мм2
А-1 105 59 220 2 158 1,2 199,1 181 185
1-2 44 25 110 2 132,8 1,28 178,5 162,3 185
2-3 14 8 110 2 42,3 1,14 50,6 46 70

Для всех воздушных линий выбираем сталеалюминиевые провода.

При выборе стандартных сечений были учтены ограничения по механической прочности ВЛ свыше 1 кВ и условиям короны и радиопомех.

Выбранные сечения подлежат проверке по предельно допустимому току в послеаварийных и ремонтных режимах. Для двухцепных ЛЭП послеаварийным током является удвоенное значение нормального тока в режиме максимальных нагрузок (табл.9).

Таблица 9

Результаты расчетов при выборе проводов ВЛ для радиального варианта

ЛЭП
Предварительное сечение
Марка провода
А-1 316 185 510 АС-185/29 510
1-2 265,6 185 510 АС-185/29 510
2-3 84,6 70 265 АС-70/11 265

5. Выбор трансформаторов на понижающих подстанциях

Трансформаторы выбираем по условию:

,

где S5 - максимальная нагрузка подстанции в нормальном режиме на пятый год эксплуатации;

- допустимый коэффициент перегрузки трансформаторов;

- число трансформаторов на подстанции.

5.1 Выбор трансформатора на понижающей подстанции ПС-1

Выбираем трансформатор на понижающей подстанции ПС-1 220/110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax=61 МВт, Qmax=34 МВАр.

Строим зимний график нагрузки (рис.2), так как трансформатор наиболее загружен в зимний период.

Рис.2. Зимний график нагрузки для подстанции ПС-1


Средняя нагрузка характерных зимних суток подстанции Sсред = 54,9 МВА. Выделим продолжительность ступени перегрузки К2 = 69,8 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 35,9 МВА.

Соотношение a + b = c + d: a + b = 40,8 МВА. ч; c + d = 30 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 16 часов

= 1,4, для вида охлаждения OFAF (ДЦ - принудительная циркуляция воздуха и масла с ненаправленным потоком масла).

Так как в разрабатываемой системе электроснабжения подстанции получают питание последовательно, а напряжение до подстанции ПС-1 220 кВ, а после 110 кВ. То целесообразнее на ПС-1 поставить автотрансформаторы. Для того, чтобы учесть мощности последующих подстанций и обеспечить запас мощности трансформатора с учетом развития, полную мощность ПС-2 и ПС-3 прибавляем к полной мощности ПС-1. Получаем S5 = 120 МВА.

= 85,7 МВА

Выбираем два автотрансформатора АТДЦТН-125000/220.

5.2 Выбор трансформатора на понижающей подстанции ПС-2

Выбираем трансформатор на понижающей подстанции ПС-2 110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax = 30 МВт, Qmax = 17 МВАр.

Строим зимний график нагрузки (рис.3), так как трансформатор наиболее загружен в зимний период.

Рис.3. Зимний график нагрузки для подстанции ПС-2

Средняя нагрузка характерных зимних суток подстанции Sсред = 23,1 МВА. Выделим продолжительность ступени перегрузки К2 = 34,5 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 23,1 МВА.

Соотношение a + b = c + d: a + b = 9,6 МВА. ч; c + d = 11,4 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 4 часа

= 1,5, для вида охлаждения ONAF (Д - принудительная циркуляция воздуха и естественная циркуляция масла).

= 23 МВА

Выбираем два трансформатора ТРДН-25000/110.

5.3 Выбор трансформатора на понижающей подстанции ПС-3

Выбираем трансформатор на понижающей подстанции ПС-2 110/10 кВ с максимальной мощностью нагрузки на пятый год эксплуатации подстанции: Рmax = 14 МВт, Qmax = 8 МВАр.

Строим зимний график нагрузки (рис.4), так как трансформатор наиболее загружен в зимний период.

Рис.4. Зимний график нагрузки для подстанции ПС-3

Средняя нагрузка характерных зимних суток подстанции Sсред = 11,3 МВА. Выделим продолжительность ступени перегрузки К2 = 16,1 МВА, а К1 как среднеквадратичное значение оставшейся нагрузки. Оно равно К1 = 10,8 МВА.

Соотношение a + b = c + d: a + b = 3,2 МВА. ч; c + d = 3 МВА. ч.

Для данной подстанции с учетом длительности ступени перегрузки 4 часа

= 1,5, для вида охлаждения ONAF (Д - принудительная циркуляция воздуха и естественная циркуляция масла).

= 7,5 МВА

Выбираем два трансформатора ТДН-10000/110.

6. Принципиальная схема расчетного варианта развития энергосистемы

Рис.5. Принципиальная схема расчетного варианта развития энергосистемы