Мыслима ситуация, при которой воздействие на тело одинаковых сил, приложенных в различных направлениях, вызывает различные ускорения. Если бы такая ситуация действительно реализовывалась в природе, инертную массу такого тела следовало бы считать тензорной величиной. В данной демонстрации моделируется движение двух тел: "обычной гири" (Normal) и тела с тензорной массой (Strange). Ускорение гири позволяет судить о действующей внешней силе. Ускорение объекта Strange вообще не совпадает с направлением ускорения обычного тела! Как и в предыдущем случае кажущееся необычным поведение тела объясняется не свойствами его инертной массы, а его участием в дополнительных взаимодействиях. В данной ситуации помимо основной силы Force тело Strange испытывает воздействие сил сухого трения, величина которых различна при движении вдоль различных направлений. Подобная ситуация может реализовываться в природе, например, при движении электронов в кристалле с некубической решеткой. При этом часто оказывается удобным исключить из рассмотрения взаимодействия с кристаллической решеткой, "расплатившись" за это введением тензорной массы, т.е. заменой реальной частицы на квазичастицу. | |
Изменяя направление внешней силы Force, убедитесь, что в случае ее действия вдоль ребер кристаллической решетки ускорения частицы и квазичастицы совпадают по направлению. |
Аддитивность массы
Масса тела обладает свойством аддитивности, т.е. равна сумме масс частей, составляющих это тело. В качестве примера моделируется ускоренное движение автопоездов, головные автомобили у которых обеспечивают одинаковые силы тяги. Массы всех автомобилей равны. Всилу аддитивности массы автопоездов относятся как 1:2:3, в чем несложно убедиться, сравнивая из ускорения, которые относятся как 3:2:1. Из-за того, что автомобили связаны между собой упругой сцепкой, на равноускоренное движение автопоездов накладываются небольшие колебания, которые можно уменьшить, увеличив жесткость пружин. | |
Отцепляя вагоны от автопоездов, убедитесь в том, что сила тяги головных автомобилей всех трех составов действительно одинакова. (Для того, чтобы расцепить составы автопоездов, достаточно "отключить" взаимодействия медлу телами). |
Релятивистская масса
При движении заряженной частицы (электрона) в однородном электрическом поле, соласно классической динамике, его скорость должна неограниченно возрастать во времени по линейному закону. В реальности она стремится к предельному значению с=137. Этот эффект может быть отнесен за счет возрастания массы частицы при приближении ее скорости к скорости света. | |
Убедитесь, что в данном случае импульсная формулировка второго закона Ньютона остается более удобной: релятивистской импульс частицы возрастает во времени по линейному закону (p=Ft). Обратите внимание на то, что в пределе малых скоростей релятивистский и классический законы движения приводят к одному и тому же результату. |
Третий закон Ньютона.
Согласно третьему закону Ньютона при взаимодействии тел возникают силы, приложенные к каждому из партнеров. При этом силы всегда оказываются равными друг другу по величине и противоположно направленными. Из законов Ньютона следует, что в случае взаимодействия двух тел, не взаимодействующих с другими, каждое из них должно двигаться с ускорением. Если масса одного из взаимодйствующих тел существенно превосходит массу другого, то его ускорение оказывается малым. |
Силы, возникающие при взаимодействиях тел
При взаимодействии двух тел, согласно третьему закону, между ними возникают равные и противоположно - направленные силы. | |
Для изменения величины гравитационного взаимодействия поменяйте массу любого из взаимодействующих тел. Убедитесь при этом, что обе силы изменят свою величину, но по-прежнему остануться равными друг другу по модулю. |
Ускорения взаимодействующих тел
В данной демонстрации масса планеты существенно превосходит массу яблока. В результате яблоко ускоренно падает на пактически неподвижную планету. На самом деле планета так же испытывает ускорние, но его величина меньше ускорения яблока в число, равное отношению массы яблока к массе планеты. | |
Увеличте массу яблока в 10, 100 и т.д. раз и убедитесь, что в этом случае планета начнет "заметно падать" на яюлоко. |
Центральные силы и третий закон Ньютона
Многие почему-то считают, что третий заколн Ньютона подраземевает ориентацию сил вдоль прямой, соединяющкей взаимодействующие тела. На самом деле подобное утверждение не имеет непосредственого отношения к третьему закону. В данной демонстрации моделируется движение тел, взаимодействиющих друг с другом нецентральными силами. | |
Приведенный в данной демонстрации пример не является "физически реальным" и не может быть реализован непосредственным определением взаимодействий в программе физического конструктора (автором программы просто не была предусмотрена возможность создания столь "нефизических" ситуаций). Для реализации данной демонстрации в систему пришлось ввести дополнительное силовое поле Unreal, обладающее весьма специфическими свойствами. Проанализируйте параметры данной физической модели и убедитесь, что созданная на компьютере ситуация действительно отвечает нецентральному взаимодействию и не противоречит системе законов Ньютона. Попытайтесь самостоятельно придумать другие примеры аналогичных "странных" систем. |
Гравитационные силы.
Взаимное притяжение всех без исключения материальных тел наблюдаемое в любой среде, называют гравитационным взаимодействием, а соответствующие силы притяжения между притягивающимися телами называются гравитационными силами..
Две материальные точки массами m1 и m2 притягиваются друг к другу с силой F прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния r между ними:
. Коэффициент пропорциональности G называется гравитационной постоянной и показывает с какой силой притягиваются две материальные точки с массами по 1 кг находящиеся на расстоянии 1 м друг от друга (G=6,67? 10-11 Н? м2/кг2).
Сила тяжести. Вес тела.
Сила, с которой притягивается к Земле тело, находящееся на её поверхности. В этом случае надо подставить в закон всемирного тяготения вместо m1 массу тела - m вместо m2 массу Земли - M и вместо r радиус Земли - R.
С увеличением высоты над поверхностью Земли сила тяжести уменьшается, но при небольших высотах по сравнению с радиусом Земли (порядка нескольких сотен метров) её можно считать постоянной.Вес тела сила, с которой тело давит на опору или натягивает нить подвеса. Если опора, на которой находится тело неподвижна или движется относительно поверхности Земли в вертикальном направлении равномерно прямолинейно, то вес тела и сила тяжести совпадают по величине (не учитывается вращение Земли). В противном случае вес тела может быть больше или меньше силы тяжести в зависимости от направления ускорения.
Реферат на тему :
« Механика »
ООШ № 7 г.Бердянска
Галицин Андрей