Смекни!
smekni.com

Определение коэффициента вязкости прозрачной жидкости по методу Стокса (стр. 1 из 2)

Лабораторная работа № 2

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА

Цель работы: ознакомиться с методом определения коэффициента вязкости прозрачной жидкости методом движущегося в жидкости шарика.

Оборудование: стеклянный цилиндр, с прозрачной жидкостью; секундомер; микрометр; масштабная линейка; шарики из свинца.

Теория вопроса и метод выполнения работы

Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность.

Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся, друг относительно друга, параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 1, 2).

Величина силы внутреннего трения

между соседними слоями пропорциональна их площади
и градиенту скорости
, то есть справедливо соотношение, полученное экспериментально Ньютоном

.(1)

Величина

называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ
измеряется в
.

Входящая в (1) величина

показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1, 2.

Рис. 1. Постоянный градиент скорости

На рисунке 1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость

. Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению
равномерно. Таким образом, здесь

.

Рис. 2. Переменный градиент скорости

На рисунке 2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью

шарика.

Предполагается, что скорость

мала, так что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость
. В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению
вблизи шарика.

Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости

. Сама величина
определяется природой жидкости и обычно существенно зависит от ее температуры.

Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения

используется метод, предложенный Стоксом.

Рассмотрим для примера равномерное движение маленького шарика радиуса

в жидкости. Обозначим скорость шарика относительно жидкости через
. Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, должно иметь вид, изображенный на рис. 2. В непосредственной близости к поверхности шара эта скорость
равна
, а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии
от поверхности шара.

Очевидно, чем больше радиус шара, тем большая масса жидкости вовлекается им в движение, и

должно быть пропорционально радиусу шарика
:
. Тогда среднее значение градиента скорости на поверхности шара равно

.

Поверхность шара

, и полная сила трения, испытываемая движущимся шаром, равна

.

Более подробные расчеты показывают, что для шара

, окончательно
– формула Стокса.

По формуле Стокса можно, например, определить скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи – измеряя скорость падения шарика в жидкости, можно определить ее вязкость.

Упавший в жидкость шарик движется равноускоренно, но, по мере того, как растет его скорость, будет возрастать и сила сопротивления жидкости до тех пор, пока сила тяжести шарика в жидкости не сравняется с суммой силы сопротивления и силы трения жидкости движению шарика. После этого движение будет происходить с постоянной скоростью

.

При движении шарика слой жидкости, граничащий с его поверхностью, прилипает к шарику и движется со скоростью шарика. Ближайшие смежные слои жидкости также приводятся в движение, но получаемая ими скорость тем меньше, чем дальше они находятся от шарика. Таким образом, при вычислении сопротивления среды следует учитывать трение отдельных слоев жидкости друг о друга, а не трение шарика о жидкость.

Если шарик падает в жидкости, простирающейся безгранично по всем направлениям

, не оставляя за собой никаких завихрений (малая скорость падения, маленький шарик), то, как показал Стокс, сила сопротивления равна

,(2)

где

– коэффициент внутреннего трения жидкости;
– скорость шарика;
– его радиус.

Кроме силы

на шарик действует сила тяжести
и архимедова сила
, равная весу
вытесненной шариком жидкости. Для шара

;
,(3)

где

,
– плотность материала шарика и исследуемой жидкости.

Все три силы будут направлены по вертикали: сила тяжести – вниз, подъемная сила и сила сопротивления – вверх. Первое время, после вхождения в жидкость, шарик движется ускоренно. Считая, что к моменту прохождения шариком верхней метки скорость его уже установилась, получим

,

где

– время прохождения шариком расстояния между метками,
– расстояние между метками.