Смекни!
smekni.com

Атомная энергетика, атомные станции (стр. 3 из 4)

3.2 Основные характеристики цепной реакции

Рассмотрим соотношения, характеризующие протекание цепной реакции деления.

3.2.1 Коэффициент размножения на быстрых нейтронах

Пусть в среде есть N быстрых нейтронов, они будут взаимодействовать с ядрами среды, в том числе и с ядрами U238, те из них которые имеют энергию выше порога деления (1 МэВ) могут вызывать деление урана и образование новых быстрых нейтронов. При этом их энергия будет меньше порога деления.

Коэффициент размножения на быстрых нейтронах m - число нейтронов ушедших под порог деления U238 на один быстрый нейтрон (появившийся в результате деления ядер U235).

Ясно, что величина m тем больше, чем больше доля U238 в топливе. Можно оценить, что mmax = 1.35 (если доля U238 равна 100%). Для тепловых реакторов m = 1.01 - 1.03.

3.2.2 Вероятность избежать радиационного захвата

Пусть в среде есть N нейтронов, энергия которых меньше порога деления U238. За счет рассеяния но ядрах среды они теряют свою энергию и попадают в область энергии, в которой находятся гигантские резонансы сечения захвата U238. Введем величину j - вероятность избежать радиационного захвата.

j тем больше, чем быстрее нейтронам в процессе замедления удастся преодолеть резонансную область. j уменьшается при увеличении доли ядер U238 в среде. В гомогенном реакторе j » 0.65, а в гетерогенном j » 0.93.

3.2.3 Коэффициент теплового использования

Пусть в среде есть N тепловых нейтронов, тогда в процессе диффузии часть из них захватится в топливе. Обозначим долю захваченных в топливе нейтронов q. Ясно, что коэффициент теплового использования можно увеличить, используя гетерогенную структуру активной зоны реактора.

3.2.4 Количество испускаемых U235 быстрых нейтронов

Пусть в топливе поглотилось N тепловых нейтронов. Ясно, что не всякое поглощение приводит к делению и испусканию новых быстрых нейтронов. Введем величину uтэф равную количеству вторичных нейтронов деления на один тепловой нейтрон, поглощенный в топливе. Ясно, что uтэф тем больше, чем выше доля U235 в топливе.

3.3 Жизненный цикл нейтронов

Рассмотрим жизненный цикл нейтронов в тепловом ЯР, активная зона которого бесконечна и гомогенна.

Пусть на некотором этапе цепной реакции в рассматриваемой среде присутствует N1 быстрых нейтронов деления 1 поколения. За счет взаимодействия с ядрами U238 под порог деления этих ядер (1 МэВ) уйдет m N1 нейтронов (m - коэффициент размножения на быстрых нейтронах).

В результате рассеяния на ядрах среды эти нейтроны будут замедляться и попадут в область промежуточных энергий. Миновать эту область, избежав поглощения ядрами U238 удастся m j N1 нейтронам (j - вероятность избежать радиационного захвата).

Часть из этих нейтронах, которые теперь стали тепловыми, захватится в топливе. Количество захваченных в топливе нейтронов будет равно m j q N1 (q - коэффициент теплового использования).

Некоторые из нейтронов, захваченных в топливе инициируют деление ядер U235 и появление новых быстрых нейтронов. Количество нейтронов второго поколения N2 = uтэф m j q N1.

Итак, мы видим, что реакция действительно является самоподдерживающейся и циклической. Цикл жизни нейтронов схематично представлен на рис. 4. На данной схеме, в отличие от вышеприведенного описания рассмотрение начинается со стадии тепловых нейтронов.

Можно вывести коэффициент размножения нейтронов в бесконечной гомогенной среде:

K¥ = Ni+1/Ni = uтэф m j q - формула 4-х сомножителей.

Для конечных сред можно ввести коэффициент

Kэф = uтэф m j q P, где P - вероятность избежать утечки.

На этом рассмотрение физических основ протекания цепной ядерной реакции в ЯР можно завершить. Используя описанную цепную ядерную реакцию, можно переводить энергию из формы энергии связи частиц в ядре в кинетическую энергию движения частиц, то есть в тепло. Как уже отмечалось ранее основную трудность представляет собой не организация цепной реакции, а получение чистых делящихся веществ и другие технические и технологические нюансы ядерной энергетики.

4. Принцип построения атомной энергетики.

4.1 Элементы ядерной физики

4.1.1 Строение атомов, ядер

Как известно, все в мире состоит из

молекул, которые представляют собой

сложные комплексы взаимодействующих

атомов. Молекулы - это наименьшие

частицы вещества, сохраняющие его

свойства. В состав молекул входят атомы

различных химических элементов.

Химические элементы состоят из атомов одного типа.

Атом, мельчайшая частица химического элемента, сос-

тоит из "тяжелого" ядра и вращающихсявокруг электро-

нов.

Ядра атомов образованы совокупностью положительно заряженных протонов и нейтральных нейтронов. Эти частицы, называемые нуклонами, удерживаются в ядрахкороткодействующими силами притяжения, возникающими за счет обменов мезонами, частицами меньшей массы.

Ядро элемента X обозначают как или X-A, например

уран U-235 -

где Z - заряд ядра, равный числу протонов, определяющий атомный номер ядра, A - массовое число ядра, равное

суммарному числу протонов и нейтронов.

Ядра элементов с одинаковым числом протонов, но разным числом нейтронов называются изотопами (например, уран

имеет два изотопа U-235 и U-238); ядра при N=const, z=var - изобарами.

4.1.2 Ядерные реакции

Ядра водорода, протоны, а также нейтроны, электроны (бета-частицы) и одиночные ядра гелия (называемые альфа-частицами), могут существовать автономно вне ядерных структур.

Такие ядра или иначе элементарные частицы, двигаясь в пространстве и приближаясь к ядрам на расстояния порядка поперечных размеров ядер, могут взаимодействовать с ядрами, как говорят участвовать в реакции. При этом частицы могут захватываться ядрами, либо после столкновения - менять направление движения, отдавать ядру часть кинетической энергии. Такие акты взаимодействия называются ядерными реакциями. Реакция без проникновения внуть ядра называется упругим рассеянием.

После захвата частицы составное ядро находится в возбужденном состоянии. "Освободиться" от возбуждения ядро может несколькими способами - испустить какую-либо другую частицу и гамма-квант, либо разделиться на две неравные части. Соответственно конечным результатам различают реакции - захвата, неупругого рассеяния, деления, ядерного превращения с испусканием протона или альфа-частицы.

Дополнительная энергия, освобождаемая при ядерных превращениях, часто имеет вид потоков гамма-квантов.

Вероятность реакции характеризуется величиной "поперечного сечения" реакции данного типа.

4.1.3 Деление ядер при процессе.


Деление тяжелых ядер происходит при

захвате нейтронов. При этом испускаются

новые частицы и освобождается энергия

связи ядра, передаваемая осколкам

деления. Это фундаментальное явление

было открыто в конце 30-ых годов немецким и учеными Ганом и Штрасманом, что заложило основу для практического использования ядерной энергии.

Ядра тяжелых элементов - урана, плутония и некоторых других интенсивно поглощают тепловые нейтроны. После акта захвата нейтрона, тяжелое ядро с вероятностью ~0,8 делится на две неравные по массе части, называемые осколками или продуктами деления. При этом испускаются - быстрые нейтроны/ (в среднем около 2,5 нейтронов на каждый акт деления), отрицательно заряженные бета-частиц и нейтральные гамма-кванты, а энергия связи частиц в ядре преобразуется в кинетическую энергию осколков деления, нейтронов и других частиц. Эта энергия затем расходуется на тепловое возбуждение составляющих вещество атомов и молекул, т.е. на разогревание окружающего вещества.

После акта деления ядер рожденные при делении осколки ядер, будучи нестабильными, претерпевают ряд последовательных радиоактивных превращений и с некоторым запаздыванием испускают "запаздывающие" нейтроны, большое число альфа, бета и гамма-частиц. С другой стороны некоторые осколки обладают способностью интенсивно поглощать нейтроны.

4.1.4 Ядерный реактор

Ядерный реактор - это техническая установка, в которой осуществляется самоподдерживающаяся цепная реакция деления тяжелых ядер с освобождением ядерной энергии. Ядерный реактор состоит из активной зоны и отражателя, размещенных в защитном корпусе.Активная зона содержит ядерное топливо в виде топливной композиции в защитном покрытии и замедлитель. Топливные элементы обычно имеют вид тонких стержней. Они собраны в пучки и заключены в чехлы. Такие сборные композиции называются сборками или кассетами.

Вдоль топливных элементов двигается теплоноситель, который воспринимает тепло ядерных превращений. Нагретый в активной зоне теплоноситель двигается по контуру циркуляции за счет работы насосов либо под действием сил Архимеда и, проходя через теплообменник, либо парогенератор, отдает тепло теплоносителю внешнего контура.

Перенос тепла и движения его носителей можно представить в виде простой схемы: