Рис. 1.2. Изменение спектров поглощения растворов наночастиц сульфида кадмия в зависимости от концентрации CdS и природы стабилизатора (а), концентрации желатина (б): а: 1, 3 – концентрация CdS 5·10-4 моль/л; 2 – 1*10-3 моль/л (стабилизаторы: 1 – 1% поливиниловый спирт, 2,3 – 0.5% желатина; толщина слоя: 1,3 – 1 см; 2 – 0.5 см); б: 1 - концентрация желатина 0.5%; 2 – 0.25%; 3 – 0.1%; 4 – 0.05%; 5 – 0.01% (концентрация CdS 5·10-4 моль/л) [7].
В работе [6] была развита методика выращивания полупроводниковых микрокристаллов в стеклянной диэлектрической матрице. Эта методика позволяет варьировать размер выращенных микрокристаллов управляемым способом от нескольких десятков до тысяч ангстрем. Изучалась размерная зависимость спектров поглощения соединений А2В6. Наблюдался с уменьшением размера микрокристаллов значительный сдвиг в коротковолновую сторону линий экситона и фундаментального края поглощения. Это явление обусловлено квантово-размерным эффектом свободных носителей и энергетических спектров экситона в микрокристаллах.
Гетерофазные системы представляют интерес как новый класс объектов, которые могут использоваться для исследования квантово-размерного эффекта в полупроводниках [6]. Фактически микрокристалл в диэлектрической матрице можно трактовать, как трехмерную потенциальную яму для электронов, дырок, экситонов и т.д. Глубина ямы в таких системах может быть порядка нескольких электронвольт. Так как квазичастицы имеют ограниченное пространство, чтобы двигаться, их движение возможно только для определенных значений энергии; таким образом, их энергетический спектр квантован. Наблюдалось, что квантово-размерный эффект в таких системах проявляется как коротковолновое смещение спектров с уменьшением размеров микрокристаллов. Величина квантово-размерного смещения строго зависит от кулоновского взаимодействия электронов и дырок. Имеются два случая ограничений: первый – когда микрокристаллический размер а гораздо меньше чем радиус экситона аех(а<<aex) и сдвиг края поглощения обусловлен квантованием свободных носителей; второй – когда аех<<a и происходит квантование размера экситонов.
Авторы [6] подробно рассматривают первый случай.
Размерное квантование энергетического спектра носителей изучалось в стеклах, содержащих соединения А2В6, в которых радиус экситонов большой (аex=30Å для CdS). Рисунок 1.3 показывает спектры поглощения стекловидных образцов, отличающихся средним радиусом выращенных микрокристаллов CdS. Как можно заметить, экситонная структура исчезает, когда размер микрокристаллов сопоставим с радиусом экситона. При уменьшении размера появляется коротковолновый сдвиг края поглощения, а также колебательная структура в спектрах поглощения. Замечено [6], что ширина запрещенной зоны микрокристаллов CdS возрастает, благодаря квантово-размерному эффекту, до значения Eg=3.2 эВ.
Положение абсорбционных линий, обусловленных межзонными переходами на квантовые подуровни зоны проводимости как функция размера микрокристаллов, которая была рассчитана по выражению (1.2).
В некоторых случаях полимерные пленки были подвергнуты одноосному натяжению для изменения размера полимерных пор. Микроскопические наблюдения [2] показали, что CdS полимерные композиты имеют слоистую структуру. Имеется полимерный слой желтого цвета вблизи поверхности полимерной пленки, который содержит кластеры CdS и бесцветный полимерный слой в середине пленки, не содержащей CdS.
Типичная ширина полимерного слоя с CdS около 10 мкм, в то время, как вся ширина полимерного слоя около 100 мкм. Объемная концентрация была рассчитана для полимерного слоя CdS, так как образцы имели слоистую структуру. Величина концентрации CdS в пленках варьировалась от 0.5%
до 90%, а объемная концентрация CdS в полимерном слое с CdS- от 0.1 объемного процента до 50 объемных процентов. Дифрактограмма рентгеновских лучей показывает модель гексагонального CdS. Наблюдалось отражение в пределах 2q– 52˚, 44˚, 26.5˚ и 24˚. Уширение линии дифракционного сигнала при 44˚ было использовано для расчета
.Рис.1.3. Зависимость спектра поглощения микрокристалла CdS от размера: (1) -320 Ǻ ; (2) - 23 Ǻ ; (3) – 15 Ǻ; (4) – 12 Ǻ [6].
диаметра (размера) частиц CdS. При высокой концентрации (~10%) среднее значение расстояния между частицами было такого же порядка, как и их размер (диаметр). При максимальных концентрациях CdS возможно существование агрегатов кластеров.
В образцах, подвергнутых одноосному натяжению [1 0 0 ], отражение Х-лучей при 24˚ наблюдалось при незначительно меньшем угле, чем в макрокристаллическом материале (где оно локализовано при 24.8˚) и интенсивность этого отражения была повышена более чем на один порядок. Его уширение было также в 1.2-2 раза меньше, чем других отражений. Эти результаты можно, вероятно, объяснить, если предположить существование ориентации кластеров CdS, и что среднее значение размера частицы удлиняется в направлении растяжения, т.е. существует текстура нанокомпонетов. Такое изменение кластеров может быть объяснено аномальной деформацией пор в полимерных пленках в растянутой пленке и ростом ядра кластера с преимущественной ориентацией в направлении [1 0 0] в этих растянутых порах.
Оптические исследования были сделаны в ультрафиолетовой и видимых областях [2]. Нормированный коэффициент объемного поглощения CdS определяется из спектра поглощения, принимая во внимание расчет поглощения полимера. В случае прямых разрешенных оптических переходов между параболическими зонами, если зависимость (k(x)hω)1/2 от hω (где k(x) – коэффициент поглощения) известна, можно определить ширину запрещенной зоны Eg. В этом случае Eg была определена для всех образцов с различными концентрациями CdS. При низких концентрациях (~0.8%) Eg была больше, чем в объеме. Этот эффект, вероятно, может быть причиной размерного квантования электронов (дырок) в малых кластерах. Для больших концентраций CdS (>10%) Eg меньше, чем в объеме CdS [2].
Спектр люминесценции CdS в полимере был исследован при комнатной температуре и температуре жидкого азота. Пик в спектре Емах сдвигается в сторону меньших энергий, когда объемная концентрация CdS возрастает. Для максимума величин концентраций (20-30 объемных процентов) пик люминесценции сдвигается до 0.7 эВ. Таким образом, как положение пика люминесценции, так и Eg , зависят от концентрации CdS матрицы. Полуширина спектра находится около 1 эв для малых концентраций и убывает до 0.5 эВ для больших. Интенсивность люминесценции убывает значительно при высоких концентрациях, и, следовательно, для этих композитов наблюдается концентрационное тушение люминесценции.