На рис.2.3. приведен сравнительный спектр возбуждения полос люминесценции нано- и монокристаллов. Хотя не удалось продвинуться в более коротковолновую область, из него видно, что длинноволновый край полосы возбуждения нанокристаллов существенно смещен в сторону более коротких длин волн по сравнению с аналогичным в монокристаллах. Таким образом, приходим к заключению, что для нанокристаллов полупроводниковых соединений А2В6 характерно существенное увеличение ширины запрещённой зоны (при комнатной температуре от 2,37 эВ до 2,6 –2,9 эВ в зависимости от технологии получения)
Исследуемые нанокристаллические образцы специально не легировались, а технология такова, что исключает попадание случайной примеси. Можно предположить, что за полосы люминесценции
Рис.2.3. Спектры возбуждения красной полосы фотолюминесценции нанокристаллов (1, 2) и монокристаллов (3, 4), измеренные при Т= 113 К (1, 3), Т= 300 К (2,4).
ответственны собственные дефекты и соответствующие полосы имеют одинаковую природу. Таким образом, дефектом ответственным за
оранжевую полосу l=520 нм является Cdi, что согласуется с литературными данными о люминесценции на монокристаллах сульфида кадмия [18,19].Эта полоса и проявляется в наших образцах, содержащих недостаток серы. Собственным дефектом ответственным за длинноволновую полосу люминесценции является сложный центр (VCd2-+VS2+)0 .
Таким образом, можно сказать, что в исследуемых нами образцах есть два центра свечения: один - отвечает за коротковолновое свечение, второй -отвечает за длинноволновое свечение. В свою очередь, наблюдаемое спектральное распределение интенсивности люминесценции зависит от концентрации центров свечения и эффективности излучательной рекомбинации на этих центрах свечения.
б) Зависимость формы спектра люминесценции нанокристаллов от интенсивности возбуждающего света.
Исследования зависимости свойств полос фотолюминесценции от интенсивности возбуждающего света показаны на рис. 2.4 и 2.5. Объекты исследования образцы №2 и №19 обладают двумя полосами свечения фотолюминесценции: как коротковолновой, так и длинноволновой, удельный вес которых для каждого образца различен. При уменьшении интенсивности возбуждающего света в 103 раз форма спектра излучения и положение максимума для образца №19 совершенно не изменились (рис. 2.4). Аналогичная ситуация наблюдалась и на образце №2 (рис. 2.5). Этот факт можно объяснить из следующих соображений. Размеры наших нанокристаллов таковы, что в кристалле имеется не более 103 атомов. При таком количестве атомов присутствие даже одного дефекта даёт содержание дефектов один на 103 атомов, когда для монокристаллов оно не превосходит одного дефекта на 106 атомов. Кроме того, в нанокристаллах нет такого распределения по размеру донорно-акцепторных пар. Каждый нанокристалл