Рис. 7. Иллюстрация «локтевого соединения» между (5,5) кресельной и (9,0) зигзагной трубой. (а) Перспективный рисунок с пентагональным и гексагональным заштрихованными кольцами, (б) структура, спроектированная на плоскость симметрии локтя.
3. Методы получения углеродных нанотрубок
3.1 Получение графита в дуговом разряде
Метод основан на образовании углеродных нанотрубок при термическом распылении графитового электрода в плазме дугового разряда, горящего в атмосфере гелия. Этот метод позволяет получать нанотрубки в количестве, достаточном для детального исследования их физико-химических свойств.
Трубка может быть получена из протяженных фрагментов графита, которые далее скручиваются в цилиндр. Для образования протяженных фрагментов необходимы специальные условия нагрева графита. Оптимальные условия получения нанотрубок реализуются в дуговом разряде при использовании электролизного графита в качестве электродов. На рис. 8 показана упрощенная схема установки для получения фуллеренов и нанотрубок.
Распыление графита осуществляется при пропускании через электроды тока с частотой 60 Гц, величина тока от 100 до 200 А, напряжение 10-20 В. Регулируя натяжение пружины, можно добиться, чтобы основная часть подводимой мощности выделялась в дуге, а не в графитовом стержне. Камера заполняется гелием с давлением от 100 до 500 торр. Скорость испарения графита в этой установке может достигать 10 г/В. При этом поверхность медного кожуха, охлаждаемого водой, покрывается продуктом испарения графита, т.е. графитовой сажей. Если получаемый порошок соскоблить и выдержать в течение нескольких часов в кипящем толуоле, то получается темно-бурая жидкость. При выпаривании ее во вращающемся испарителе получается мелкодисперсный порошок, вес его составляет не более 10% от веса исходной графитовой сажи, в нем содержится до 10% фуллеренов и нанотрубок.
В описанном способе получения нанотрубок гелий играет роль буферного газа. Атомы гелия уносят энергию, выделяющуюся при объединении углеродных фрагментов. Опыт показывает, что оптимальное давление гелия для получения фуллеренов находится в диапазоне 100 торр, для получения нанотрубок – в диапазоне 500 торр.
Рис. 8. Схема установки для получения фуллеренов и нанотрубок. 1 - графитовые электроды; 2 - охлаждаемая медная шина; 3 - медный кожух, 4 – пружины.
Среди различных продуктов термического распыления графита (фуллерены, наночастицы, частицы сажи) небольшая часть (несколько процентов) приходится и на многослойные нанотрубки, которые частично прикрепляются к холодным поверхностям установки, частично осаждаются на поверхности вместе с сажей.
Однослойные нанотрубки образуются при добавлении в анод небольшой примеси Fe, Co, Ni, Cd (т.е. добавлением катализаторов). Кроме того, ОСНТ получаются при окислении многослойных нанотрубок. С целью окисления многослойные нанотрубки обрабатываются кислородом при умеренном нагреве, либо кипящей азотной кислотой, причем в последнем случае происходит удаление пятичленных графитовых колец, приводящее к открытию концов трубок. Окисление позволяет снять верхние слои с многослойной трубки и открыть ее концы. Так как реакционная способность наночастиц выше, чем у нанотрубок, то при значительном разрушении углеродного продукта в результате окисления доля нанотрубок в оставшейся ее части увеличивается.
3.2 Метод лазерного испарения
Альтернативой выращивания нанотрубок в дуговом разряде является метод лазерного испарения. В данном методе синтезируются в основном ОСНТ при испарении смеси углерода и переходных металлов лазерным лучом из мишени, состоящей из сплава металла с графитом. По сравнению с методом дугового разряда, прямое испарение позволяет обеспечить более детальный контроль условий роста, проводить длительные операции и производить нанотрубки с большим выходом годных и лучшего качества. Фундаментальные же принципы, лежащие в основе производства ОСНТ методом лазерного испарения такие же, как и в методе дугового разряда: атомы углерода начинают скапливаться и образовывать соединение в месте нахождения частиц металлического катализатора. В установке (рис. 9) сканирующий лазерный луч фокусировался в 6-7 мм пятно на мишень, содержащую металл-графит. Мишень помещалась в наполненную (при повышенном давлении) аргоном и нагретую до 1200 °С трубу. Сажа, которая образовывалась при лазерном испарении, уносилась потоком аргона из зоны высокой температуры и осаждалась на охлаждаемый водой медный коллектор, находящийся на выходе из трубы.
Рис. 9. Схема установки лазерной абляции.
3.3 Химическое осаждение из газовой фазы
Метод плазмохимического осаждения из газовой фазы (ПХО) основан на том, что газообразный источник углерода (чаще всего метан, ацетилен или моноксид углерода) подвергают воздействию какого-либо высокоэнергетического источника (плазмы или резистивно-нагреваемой катушки) для того чтобы расщепить молекулу на реакционно-активный атомарный углерод. Далее происходит его распыление над разогретой подложкой, покрытой катализатором (обычно это переходные металлы первого периода Fe, Co, Ni и др.), на котором осаждается углерод. Нанотрубки образуются только при строго соблюдаемых параметрах. Точное воспроизведение направления роста нанотрубок и их позиционирование на нанометровом уровне может быть достигнуто только при получении их методом каталитического ПХО. Возможен точный контроль за диаметром нанотрубок и их скоростью роста. В зависимости от диаметра частиц катализатора могут расти исключительно ОСНТ либо МСНТ. На практике данное свойство широко используется в технологии создания зондов для сканирующей зондовой микроскопии. Задавая положение катализатора на конце кремниевой иглы кантилевера, можно вырастить нанотрубку, которая значительно улучшит воспроизводимость характеристик и разрешающую способность микроскопа, как при сканировании, так и при проведении литографических операций.
Обычно синтез нанотрубок по ПХО методу происходит в два этапа: приготовление катализатора и собственно рост нанотрубок. Нанесение катализатора осуществляется распылением переходного металла на поверхность подложки, а затем, используя химическое травление или отжиг, инициализируют формирование частиц катализатора, на которых в дальнейшем происходит рост нанотрубок (рис. 10). Температура при синтезе нанотрубок варьируется от 600 до 900 °С.
Среди множества методов ПХО следует отметить метод каталитического пиролиза углеводородов (рис. 10), в котором возможно реализовать гибкое и раздельное управление условиями образования нанотрубок.
В качестве катализатора обычно используется железо, которое образуется в восстановительной среде из различных соединений железа (хлорид железа (III), салицилат железа (III) или пентакарбонил железа). Смесь солей железа с углеводородом (бензолом) распыляется в реакционную камеру либо направленным потоком аргона, либо с использованием ультразвукового распылителя. Полученный аэрозоль с потоком аргона поступает в кварцевый реактор. В зоне печи предварительного нагрева аэрозольный поток прогревается до температуры ~250 °С, происходит испарение углеводорода и начинается процесс разложения металлсодержащей соли. Далее аэрозоль попадает в зону печи пиролиза, температура в котором составляет 900 °С. При этой температуре происходит процесс образования микро- и наноразмерных частиц катализатора, пиролиз углеводорода, образование на частицах металла и стенках реактора различных углеродных структур, в том числе нанотрубок. Затем газовый поток, двигаясь по реакционной трубе, поступает в зону охлаждения. Продукты пиролиза осаждаются в конце зоны пиролиза на охлаждаемом водой медном стержне.
Рис. 10. Схема установки каталитического пиролиза углеводородов.
4. Свойства углеродных нанотрубок
Углеродные нанотрубки сочетают в себе свойства молекул и твердого тела и рассматриваются некоторыми исследователями как промежуточное состояние вещества. Результаты уже первых исследований углеродных нанотрубок указывают на их необычные свойства. Некоторые свойства однослойных нанотрубок приведены в табл. 1.
Электрические свойства ОСНТ в значительной степени определяются их хиральностью. Многочисленные теоретические расчеты дают общее правило для определения типа проводимости ОСНТ:
трубки с (n, n) всегда металлические;
трубки с n – m= 3j, где j не нулевое целое число, являются полупроводниками с малой шириной запрещенной зоны; а все остальные являются полупроводниками с большой шириной запрещенной зоны.
В действительности зонная теория для n – m = 3j трубок дает металлический тип проводимости, но при искривлении плоскости открывается небольшая щель в случае ненулевого j. Нанотрубки типа кресло (n, n) в одноэлектронном представлении остаются металлическими вне зависимости от искривления поверхности, что обусловлено их симметрией. С увеличением радиуса трубки R ширина запрещенной зоны для полупроводников с большой и малой шириной уменьшается по закону 1/R и 1/R2 соответственно. Таким образом, для большинства экспериментально наблюдаемых нанотрубок, щель с малой шириной, которая определяется эффектом искривления, будет настолько мала, что в условиях практического применения все трубки с n – m= 3j при комнатной температуре считаются металлическими.