Свойства | Однослойные нанотрубки | Сравнение с известными данными |
Характерный размер | Диаметр от 0,6 до 1,8 нм | Предел электронной литографии 7 нм |
Плотность | 1.33-1.4 г/см3 | Плотность алюминия 2.7 г/см3 |
Прочность на разрыв | 45 ГПа | Самый прочный сплав стали разламывается при 2 ГПа |
Упругость | Упруго изгибается под любым углом | Металлы и волокна из углерода ломаются по границам зерен |
Плотность тока | Оценки дают до 1Г А/см2 | Медные провода выгорают при 1 MA/cm2 |
Автоэмиссия | Активируются при 1-3 В при расстоянии 1 мкм | Молибденовые иглы требуют 50 - 100 В, и недолговечны |
Теплопроводность | Предсказывают до 6000 Вт/мК | Чистый алмаз имеет 3320 Вт/мК |
Стабильность по температуре | До 2800°С в вакууме и 750°С на воздухе | Металлизация в схемах плавится при 600 - 1000°С |
Цена | 500$/г | Золото 10$/г |
Высокая механическая прочность углеродных нанотрубок в сочетании с их электропроводностью дают возможность использовать их в качестве зонда в сканирующих зондовых микроскопах, что на несколько порядков повышает разрешающую способность приборов подобного рода и ставит их в один ряд с таким уникальным устройством, как полевой ионный микроскоп.
Нанотрубки обладают высокими эмиссионными характеристиками; плотность тока автоэлектронной эмиссии при напряжении около 500 В достигает при комнатной температуре значения порядка 0,1 А.см-2. Это открывает возможность создания на их основе дисплеев нового поколения.
Нанотрубки с открытым концом проявляют капиллярный эффект и способны втягивать в себя расплавленные металлы и другие жидкие вещества. Реализация этого свойства нанотрубок открывает перспективу создания проводящих нитей диаметром около нанометра.
Весьма перспективными представляется использование нанотрубок в химической технологии, что связано, с одной стороны, с их высокой удельной поверхностью и химической стабильностью, а с другой стороны — с возможностью присоединения к поверхности нанотрубок разнообразных радикалов, которые могут служить в дальнейшем либо каталитическими центрами, либо зародышами для осуществления разнообразных химических превращений. Образование нанотрубками многократно скрученных между собой случайным образом ориентированных спиралевидных структур приводит к возникновению внутри материала нанотрубок значительного количества полостей нанометрового размера, доступных для проникновения извне жидкостей или газов. В результате удельная поверхность материала, составленного из нанотрубок, оказывается близкой к соответствующей величине для индивидуальной нанотрубки. Это значение в случае однослойной нанотрубки составляет около 600 м2.г-1. Столь высокое значение удельной поверхности нанотрубок открывает возможность их использования в качестве пористого материала в фильтрах, в аппаратах химической технологии и др.
В настоящее время предложены различные варианты применения углеродных нанотрубок в газовых датчиках, которые активно используются в экологии, энергетике, медицине и сельском хозяйстве. Созданы газовые датчики, основанные на изменении термоэдс или сопротивления при адсорбции молекул различных газов на поверхности нанотрубок.
5. Применение нанотрубок в электронике
Хотя технологические применения нанотрубок, основанные на их высокой удельной поверхности, представляют значительный прикладной интерес, наиболее привлекательными представляются те направления использования нанотрубок, которые связаны с разработками в различных областях современной электроники. Такие свойства нанотрубки, как ее малые размеры, меняющаяся в значительных пределах, в зависимости от условий синтеза, электропроводность, механическая прочность и химическая стабильность, позволяют рассматривать нанотрубку в качестве основы будущих элементов микроэлектроники.
Внедрение в идеальную структуру однослойной нанотрубки в качестве дефекта пары пятиугольник - семиугольник (как на рис. 7) изменяет ее хиральность и, как следствие, ее электронные свойства. Если рассмотреть структуру (8,0)/(7,1), то из расчетов следует, что трубка с хиральностью (8,0) представляет собой полупроводник с шириной запрещенной зоны 1,2 эВ, в то время как трубка с хиральностью (7,1) является полуметаллом. Таким образом, эта изогнутая нанотрубка должна представлять собой молекулярный переход металл-полупроводник и может быть использована для создания выпрямляющего диода - одного из основных элементов электронных схем.
Аналогичным образом в результате внедрения дефекта могут быть получены гетеропереходы полупроводник - полупроводник с различными значениями ширины запрещенной зоны. Тем самым нанотрубки с внедренными в них дефектами могут составить основу полупроводникового элемента рекордно малых размеров. Задача внедрения дефекта в идеальную структуру однослойной нанотрубки представляет определенные технические трудности, однако можно рассчитывать, что в результате развития созданной недавно технологии получения однослойных нанотрубок с определенной хиральностью эта задача найдет успешное решение[2].
На основе углеродных нанотрубок удалось создать транзистор[3],[4], по своим свойствам превышающий аналогичные схемы из кремния, который в настоящее время является главным компонентом при изготовлении полупроводниковых микросхем. На поверхность кремниевой подложки р- или n-типа, предварительно покрытой 120-нм слоем SiO2, формировали платиновые электроды истока и стока и из раствора осаждали однослойные нанотрубы (рис. 11).
Рис.11. Полевой транзистор на полупроводниковой нанотрубке. Нанотрубка лежит на непроводящей (кварцевой) подложке в контакте с двумя сверхтонкими проводами, в качестве третьего электрода (затвора) используется кремниевый слой (а); зависимость проводимости в цепи от потенциала затвора (б)3.
Задание
1. Ознакомиться со свойствами, структурой и технологией получения углеродных нанотрубок.
2. Подготовить содержащий углеродные нанотрубки материал для исследования методом просвечивающей электронной микроскопии.
3. Получить сфокусированное изображение нанотрубок при различных увеличениях. При максимально возможном разрешении оценить размер (длину и диаметр) предложенных нанотрубок. Сделать вывод о характере нанотрубок (однослойные или многослойные) и наблюдаемых дефектах.
Контрольные вопросы
1. Электронная структура углеродных материалов. Структура одноcлойных нанотрубок. Структура многоcлойных нанотрубок.
2. Свойства углеродных нанотрубок.
3. Основные параметры, определяющие электрические свойства нанотрубок. Общее правило для определения типа проводимости однослойной нанотрубки.
4. Локтевые соединения нанотрубок. Электронные свойства таких соединений.
5. Области применения углеродных нанотрубок.
6. Методы получения нанотрубок: метод термического разложения графита в дуговом разряде, метод лазерного испарения графита, метод химического осаждения из газовой фазы.
Литература
1. Харрис, П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века. /П.Харрис- М.: Техносфера, 2003.-336 с.
2. Елецкий, А. В. Углеродные нанотрубки / А. В. Елецкий //Успехи физических наук. – 1997.- Т 167, № 9 – С. 945 - 972
3. Бобринецкий, И. И. Формирование и исcледование электрофизических свойств планарных структур на основе углеродных нанотрубок. Диссертация на соискание ученой степени кандидата технических наук// И.И.Бобринецкий. – Москва, 2004.-145 с.
[1] Bernaerts D. et al./ in Physics and Chemistry of fullerenes and Derivaties (Eds H.Kusmany et al.) – Singapore, World Scientific. – 1995. – P.551
[2] Thes A. et al. / Science. - 1996. - 273 – P. 483
[3] Wind, S. J. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes / S. J.Wind, Appenzeller J., Martel R., Derycke and Avouris P. // Appl. Phys. Lett. - 2002.- 80. P.3817.
[4] Tans S.J., Devoret M.H., Dai H. // Nature.1997. V.386. P.474-477.