ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
«Нижегородский государственный университет им. Н.И. Лобачевского»
Физический факультет
Кафедра физики полупроводников и оптоэлектроники
С. М. Планкина
«Углеродные нанотрубки»
Описание лабораторной работы по курсу
«Материалы и методы нанотехнологии»
Нижний Новгород 2006 г.
Цель данной работы: ознакомиться со свойствами, структурой и технологией получения углеродных нанотрубок и изучить их структуру методом просвечивающей электронной микроскопии.
1. Введение
До 1985 года об углероде было известно, что он может существовать в природе в двух аллотропных состояниях: 3D форме (структура алмаза) и слоистой 2D форме (структура графита). В графите каждый слой сформирован из сетки гексагонов с расстоянием между ближайшими соседями dc-c=0.142 нм. Слои располагаются в АВАВ... последовательности (рис. 1), где атомы I - лежат непосредственно над атомами в смежных плоскостях, а атомы II - над центрами гексагонов в смежных областях. Результирующая кристаллографическая структура показана на рис 1а, где a1 и a2 – единичные вектора в графитовой плоскости, с - единичный вектор, перпендикулярный гексагональной плоскости. Расстояние между плоскостями в решетке равно 0.337 нм.
Рис. 1. (а) Кристаллографическая структура графита. Решетка определяется единичными векторами a1, a2 и с. (б) Соответствующая зона Бриллюэна.
Из-за того, что расстояние между слоями больше, чем расстояние в гексагонах, графит может быть аппроксимирован как 2D материал. Расчет зонной структуры показывает вырождение зон в точке К в зоне Бриллюэна (см. рис. 1б). Это вызывает особенный интерес, в связи с тем, что уровень Ферми пересекает эту точку вырождения, что характеризует этот материал как полупроводник с исчезающей энергетической щелью при Т→0. Если при расчетах учитывать межплоскостные взаимодействия, то в зонной структуре происходит переход от полупроводника к полуметаллу из-за перекрытия энергетических зон.
В 1985 г. Харольдом Крото и Ричардом Смоли были открыты фуллерены – 0D форма, состоящая из 60 атомов углерода. Это открытие было удостоено в 1996 г. Нобелевской премии по химии. В 1991 г. Иижима обнаружил новую 1D форму углерода - продолговатые трубчатые углеродные образования, названные «нанотрубками». Разработка Кретчмером и Хаффманом технологии их получения в макроскопических количествах положила начало систематическим исследованиям поверхностных структур углерода. Основным элементом таких структур является графитовый слой – поверхность, выложенная правильными пяти-шести- и семиугольниками (пентагонами, гексагонами и гептагонами) с атомами углерода, расположенными в вершинах. В случае фуллеренов такая поверхность имеет замкнутую сферическую или сфероидальную форму (рис.2), каждый атом связан с 3 соседями и связь – sp2. Наиболее распространенная молекула фуллерена С60 состоит из 20 гексагонов и 12 пентагонов. Ее поперечный размер – 0.714нм. При определенных условиях молекулы С60 могут упорядочиваться и образовывать молекулярный кристалл. При определенных условиях при комнатной температуре молекулы С60 могут упорядочиваться и образовывать молекулярные кристаллы красноватого цвета с гранецентрированной кубической решеткой, параметр которой равен 1,41 нм.
Рис.2. Молекула С60.
2. Структура углеродных нанотрубок
2.1 Угол хиральности и диаметр нанотрубок
Углеродные нанотрубки представляют собой протяженные структуры, состоящие из свернутых в однослойную (ОСНТ) или многослойную (МСНТ) трубку графитовых слоев. Известный наименьший диаметр нанотрубки - 0.714 нм, что является диаметром молекулы фуллерена С60. Расстояние между слоями практически всегда составляет 0,34 нм, что соответствует расстоянию между слоями в графите. Длина таких образований достигает десятков микрон и на несколько порядков превышает их диаметр (рис. 3). Нанотрубки могут быть открытыми или заканчиваться полусферами, напоминающими половину молекулы фуллерена.
Свойства нанотрубки определяются углом ориентации графитовой плоскости относительно оси трубки. На рис.3 приведены две возможные высокосимметричные структуры нанотруб – зигзальные (zigzag) и кресельные (armchair). Но на практике большинство нанотруб не обладает такими высокосимметричными формами, т.е. в них гексагоны закручиваются по спирали вокруг оси трубы. Эти структуры называют хиральными.
Рис.3. Идеализированные модели однослойных нанотрубок с зигзагной (а) и кресельной (б) ориентациями.
Рис. 4. Углеродные нанотрубки образуются при скручивании графитовых плоскостей в цилиндр, соединяя точку А с А'. Угол хиральности определяется как q - (а). Трубка типа «кресло», сh= (4,4) - (б). Шаг Р зависит от угла q - (с).
Существует ограниченное число схем, с помощью которых из графитового слоя можно выстроить нанотрубку. Рассмотрим точки А и А' на рис. 4а. Вектор, соединяющий А и А' определяется, как ch =na1+ma2, где n, m - действительные числа, a1, а2 - единичные вектора в графитовой плоскости. Трубка образуется при сворачивании графитового слоя и соединении точек А и А'. Тогда она определяется единственным образом вектором ch. На рис. 5 дана схема индексирования вектора решетки ch.
Индексы хиральности однослойной трубки однозначным образом определяют ее диаметр:
где
- постоянная решетки. Связь между индексами и углом хиральности дается соотношением:Рис.5. Схема индексирования вектора решетки ch.
Нанотрубки типа зигзаг определяются углом Q =0°, что соответствует вектору (n, m)= (n, 0). В них связи С-С идут параллельно оси трубки (рис.3, а).
Структура типа «кресло» характеризуется углом Q = ±30°, соответствующим вектору (n, m) = (2n, -n) или (n, n). Эта группа трубок будет иметь С-С связи, перпендикулярные оси трубки (рис. 3б и 4б). Остальные комбинации формируют трубки хирального типа, с углами 0°<<Q<30о. Как видно из рис. 4с, шаг спирали Р зависит от угла Q.
2.2 Структура многослойных нанотрубок
Многослойные нанотрубки отличаются от однослойных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении. Возможные разновидности поперечной структуры многослойных нанотрубок представлены на рис. 6 . Структура типа "русской матрешки" (рис. 6а) представляет собой совокупность коаксиально вложенных друг в друга однослойных цилиндрических нанотрубок. Другая разновидность этой структуры, показанная на рис. 6б, представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведенных структур (рис. 6в) напоминает свиток. Для всех приведенных структур характерно значение расстояния между соседними графитовыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита. Реализация той или иной структуры в конкретной экспериментальной ситуации зависит от условий синтеза нанотрубок.
Исследования многослойных нанотрубок показали, что расстояния между слоями могут меняться от стандартной величины 0,34 нм до удвоенного значения 0,68 нм. Это указывает на наличие дефектов в нанотрубках, когда один из слоев частично отсутствует.
Значительная часть многослойных нанотрубок может иметь в сечении форму многоугольника, так что участки плоской поверхности соседствуют с участками поверхности высокой кривизны, которые содержат края с высокой степенью sр3-гибридизованного углерода. Эти края ограничивают поверхности, составленные из sр2-гибридизованного углерода, и определяют многие свойства нанотрубок.
Рис 6. Модели поперечных структур многослойных нанотрубок (а) - «русская матрешка»; (б) – шестигранная призма; (в) – свиток [[1]].
2.3 Локтевые соединения
Другой тип дефектов, нередко отмечаемых на графитовой поверхности многослойных нанотрубок, связан с внедрением в поверхность, состоящую преимущественно из гексагонов, некоторого количества пентагонов или гептагонов. Наличие таких дефектов в структуре нанотрубок приводит к нарушению их цилиндрической формы, причем внедрение пентагона вызывает выпуклый изгиб, в то время как внедрение гептагона способствует появлению крутого локтеобразного изгиба. Таким образом, подобные дефекты вызывают появление изогнутых и спиралевидных нанотрубок, причем наличие спиралей с постоянным шагом свидетельствует о более или менее регулярном расположении дефектов на поверхности нанотрубки. Было установлено, что кресельные трубы могут соединяться с трубами зигзаг при помощи локтевого соединения, включающего пентагон с внешней стороны локтя и гептагон с его внутренней стороны. В качестве примера на рис. 7 приведено соединение (5,5) кресельной трубы и (9,0) зигзагной трубы.