Чтобы понять, что представляют собой длинноволновые колебания этой ветви, найдем отношение амплитуд колебаний B/A при k = 0 с помощью (36):
(42)Мы видим, что атомы в каждой ячейке движутся в противофазе, то сближаясь, то удаляясь друг от друга, причем одновременно во всех ячейках (если k = 0). Амплитуда движения легкого атома больше амплитуды тяжелого в M2/M1 раз, т. е. центр тяжести ячейки остается на месте.
Если атомы заряжены, то при колебаниях такого типа каждая ячейка представляет собой переменный дипольный момент. Дипольные моменты взаимодействуют с электромагнитным полем, и колебания легко возбуждаются электромагнитными волнами соответствующих частот. В связи с этим, вся ветвь колебаний называется оптической.
При длинноволновых акустических колебаниях атомы ячейки движутся в фазе и никакого дипольного момента не возникает. Поэтому акустические колебания с электромагнитным полем взаимодействуют слабо.
Энергия длинноволнового оптического фонона имеет тот же порядок величины, что и энергия фонона акустического колебания с максимальной частотой, которую мы оценили в 0,05 эВ. Энергии оптических фононов большинства полупроводниковых кристаллов лежат в диапазоне 0,03ч 0,1 эВ.
Посмотрим теперь, как колеблются атомы, когда длина волны минимальна, т. е. когда волновой вектор лежит на границе зоны Бриллюэна.
В случае акустических колебаний ω2 = 2γ/M2, коэффициент при B во втором уравнении системы (25) обращается в ноль, откуда следует что A = 0.
В случае оптических колебаний ω2 = 2γ/M1, и из первого уравнения (25) следует что B = 0.
Таким образом, при k = π/a в случае акустических волн колеблются тяжелые атомы, а легкие неподвижны, в случае оптических, наоборот: колеблются легкие, тяжелые стоят на месте.
Обобщим теперь полученные результаты. Нетрудно показать, что если примитивная ячейка одномерной цепочки содержит l атомов, то спектр колебаний состоит из l ветвей, одна из которых акустическая, а остальные – оптические.
Мы рассматривали бесконечную цепочку, не накладывая никаких ограничений на длины волн упругих колебаний. В результате, мы пришли к выводу, что в цепочке могут распространяться колебания с любыми волновыми векторами, лежащими в первой зоне Бриллюэна. (Было показано, что из-за дискретности цепочки волновые вектора, отличающиеся на произвольный вектор обратной решетки, описывают одни и те же колебания. Поэтому можно брать волновой вектор из любой зоны Бриллюэна. Естественней всего описывать колебание наименьшим волновым вектором, т.е. вектором из первой зоны Бриллюна.)
Чтобы иметь дело не с непрерывным, а с дискретным набором волновых векторов, можно потребовать, чтобы отклонение атомов от равновесия было периодической функцией: u(xn) = u(xn+L). Иными словами — поставить граничные условия Борна-Кармана. Период L должен быть кратен постоянной решетки цепочки.
Условиям Борна-Кармана удовлетворяют только гармонические колебания с ''разрешенными'' волновыми векторами kn = 2π n/L. Нетрудно подсчитать, что в зоне Бриллюэна размещается L/a разрешенных волновых векторов, т. е. ровно столько, сколько примитивных ячеек укладывается на длине L. (Волновым векторам –π/a и π/a соответствует одно и то же колебание и поэтому считаем эти два значения за одно). Мы уже упоминали выше об этом свойстве зоны Бриллюэна.
Так как колебание однозначно определяется волновым вектором и ветвью, то различных колебаний столько, сколько атомов содержит цепочка. Это общее свойство линейных колебательных систем: количество независимых колебаний (нормальных мод) равно числу степеней свободы системы.
Энергию колебаний и теплоемкость решетки будем рассчитывать для единичного объема кристалла, т. е. положим нормировочный объем равным единице: V = L3 = 1.
Чтобы вычислить среднюю энергию колебаний кристаллической решетки, нужно просуммировать среднюю энергию всех типов колебаний (всех состояний фононов):
(43).Проще всего это сделать при высоких температурах, когда для частот всех колебаний выполняется неравенство ħωjk<< kT (классический предел). Тогда средняя энергия, приходящаяся на каждое колебание, равна kBT, всего колебаний 3lN = 3lN, для полной энергии E получаем:
(44).Так как N – число примитивных ячеек кристалла в единице объема, то N = 1/v0, где v0 – объем примитивной ячейки.
Теплоемкость решетки при высоких температурах постоянна (закон Дюлонга и Пти): CV = 3lNk (45).
При невысоких температурах все сложнее. Чтобы точно вычислить энергию решетки, то есть сосчитать сумму (45), необходимо знать дисперсионные зависимости для всех ветвей колебаний. И даже при условии, что зависимости эти известны, аналитическое выражение для энергии получить практически невозможно.
Поэтому для нахождения энергии и теплоемкости решетки применяют различные приближения.
В модели Эйнштейна предполагается, что частоты всех фононов одинаковы: ωjk = ω1 (46).
Тогда для энергии получаем:
(47).При высоких температурах, kBT>>ħω1, эта зависимость приводит к выражению (45) для энергии и закону Дюлонга и Пти (46) для теплоемкости.
При низких температурах, kT<<ħω1, энергия колебаний и теплоемкость экспоненциально уменьшаются:
Модель Эйнштейна хорошо описывает вклад в энергию и теплоемкость оптических ветвей фононов, у которых частота слабо зависит от волнового вектора и ее можно считать постоянной. Чтобы учесть только оптические ветви, частоту которых мы полагаем равной ω1, нужно вместо 3l писать число этих ветвей. В общем случае, частоты разных оптических ветвей могут сильно отличаться друг от друга и их вклад в энергию и теплоемкость нужно учитывать отдельно.
Опыт показывает, что теплоемкость действительно падает с уменьшением температуры, но не экспоненциально, а пропорционально T3. Дело в том, что при любых, сколь угодно низких температурах в кристалле найдутся колебания, энергия фонона которых меньше kBT. Это – длинноволновые акустические колебания. Именно такие колебания, точнее те из них, частота которых меньше kBT/ħ, вносят основной вклад в энергию при низких температурах. Колебания с большими частотами (оптические и более коротковолновые акустические) ''заморожены'': фононов этих колебаний экспоненциально мало.
Сделаем простую оценку. Вклад в энергию вносят фононы, энергия которых меньше kT. Пусть скорость звука j-й акустической ветви равна
j и не зависит от направления волнового вектора: ω = j|k|. Тогда вклад в энергию дают колебания с волновыми векторами, меньшими kmax = kBT/(ħ j). Плотность разрешенных значений волновых векторов в k-пространстве кристалла равна V/(2π)3, поэтому внутри сферы радиуса kmax содержится разрешенных значений волновых векторов. Это число колебаний одной акустической ветви, вносящих существенный вклад в энергию. На каждое такое колебание приходится энергия порядка kT. Для энергии колебаний одной акустической ветви получаем: (50).Так как мы вычисляем энергию и теплоемкость единицы объема кристалла, то в (50) мы положили V = 1.
Таким образом, вклад одной акустической ветви в теплоемкость пропорционален T3:
(51).Чтобы получить полную энергию и теплоемкость, надо сложить вклады от трех акустических ветвей:
(52),где через
j обозначена скорости звука j-й акустической ветви.