Смекни!
smekni.com

Елементарні частинки та їх застосування (стр. 3 из 4)

Тепер перейдемо до питання про взаємодію кварків в нуклоні. Експерименти по розсіюванню нейтрино і антинейтрино на нуклоні показали , що імпульс нуклона лише частково (приблизно на 50%) переноситься карками , а інша його частина переноситься іншим видом матерії, яка не взаємодіє з нейтрино. Передбачається , що ця частина матерії складається із частинок , якими обмінюються кварки і за рахунок яких вони утримуються в нуклоні. Ці частинки одержали назву “глюонів” (з англійської glue - клей). З викладеної вище точки зору на взаємодію ці частинки рахують векторними. В сучасній теорії їх існування пов'язується з симетрією , що зумовлює появу “кольору” у кварків.

Отже , на рівні елементарних частинок фактично відсутні істотні відмінності між речовиною і полем як видами матерії .І електрон , і позитрон , і протон , і фотон є як елементарними частинками речовини, так і квантами відповідних полів. Про відносність поділу матерії на рівні елементарних частинок на частинки речовини і частинки поля переконливо свідчить взаємоперетворюваність частинок речовини й поля . Наприклад, у 1934 році було встановлено , що при зіткненні електрона з позитроном відбувається їх перетворення в два фотони, тобто відбувається перетворення частинок речовини в частинки електромагнітного поля. Можна також говорити про перетворення квантів електронно-позитронного поля в кванти електромагнітного поля. Можливий також і зворотний процес перетворення фотона великої енергії під час зіткнення з ядром в пару електрон –позитрон. У цьому випадку частинка поля–фотон–перетворюється в частинку речовини (електрон–позитрон). Природно , під час цих перетворень виконується всі закони збереження. Так , маса фотона виявляється точно рівною сумі мас частинок , які утворилися. Тому не може бути й мови ні про яке “знищення” або “створення” маси , а тим більше матерії в цих процесах.

Дослідження показали , що перетворення в фотони і створення за рахунок фотонів спостерігається для всіх заряджених частинок і античастинок: протона й антипротона ,м-- мезона й м+ -мезона , р+ - мезона і р-- мезона , К- - мезона і К+ - мезона , а також для нейтрона і антинейтрона. Як і у випадку перетворення пари електрон– позитрон , під час всіх цих процесів перетворення частинок речовини в частинки електромагнітного поля (фотони) і зворотно зберігаються маса, енергія , імпульс і деякі інші характеристики частинок.

Застосування елементарних частинок

Встановлення факту існування античастинок–позитронів , антинейтронів, антипротонів – привело до нової проблеми–проблеми антиречовини. Відкриття антипротона дало можливість висловити припущення , що антипротон може захоплювати на зовнішню орбіту позитрон і утворювати “антиатом”, аналогічний до атома Гідрогену, з тією лише різницею, що позитивні й негативні заряди міняються місцями . З антипротонів і антинейтронів можуть утворюватися “антиядра”

й інших елементів, які, захопивши на зовнішню орбіту відповідну кількість позитронів, утворюють антиатоми цих елементів. Сукупність таких антиатомів утворює антиречовину .

Ці припущення дістали експериментальне підтвердження. На сьогодні одержано важкий антиводень (антидейтерій), антигелій і антитритій.

Властивості антиречовини нічим не відрізняються від властивостей звичайної речовини, але разом речовина й антиречовина існувати не можуть взаємодіючи , атоми речовини й антиречовини зникають , перетворюючись у фотони та інші частинки . При такому перетворенні дефект маси досягає максимуму і виділяється максимально можлива , згідно з законом взаємозв'язку маси й енергії , кількість повної енергії 2mcІ, де m – маса однієї частинки. Таким чином , антиречовина є найбільш досконалим , найбільш “калорійним” паливом. Але це паливо необхідно не лише навчитися добувати , а й зберігати , оскільки воно має бути старанно ізольоване від звичайної речовини . Чи зможе людство успішно розв'язати цю проблему, покаже майбутнє.

Вчені припускають можливість існування окремих зір , а можливо , й цілих зоряних систем (галактик), які складаються з антиречовини , – антисвітів. Зустріч у світовому просторі зірок з двома типами речовини закінчилося б гігантським вибухом, зумовленим спільним зникнення атомів і антиатомів–перетворенням їх у фотони та інші частинки.

Частинки нейтрино характеризуються величезною проникаючою здатністю : одна така частинка може пройти крізь шар сталі товщиною в діаметр нашої галактики. Також вдається зафіксувати окремі взаємодії антинейтрино з атомами речовини . Такі взаємодії зрідка спостерігаються поблизу атомних реакторів , які випромінюють дуже сильні нейтринні потоки.

В останні роки високого розвитку досягла астрономія. Появилися нові розділи астрономії: радіо-і рентгеноастрономія , нейтринна астрономія . Відкриті нові космічні об'єкти – радіозірки, квазари, пульсари і т. д. Загальноприйнятим стало відкриття пульсарів як нейтронних зірок , деякі з них являються залишками вибухів понад нових зірок , як знаменитий пульсар в центрі Крабовидної туманності .

Спостерігається розвиток нейтринної астрономії. Великі маси речовини , здатними взаємодіяти з антинейтрино, містяться в балонах під горою Андирчі в Баксанській ущелині на Кавказі так, щоб можна було зафіксувати частинки , які пройшли через товщину Землі . Це робиться для того , щоб виключити випадкові взаємодії з частинками космічних променів. Потоки нейтрино несуть інформацію із тих місць , де вони зародилися . Це , як правило , внутрішній вміст зірок , в тому числі Сонця . Світло, що досягає поверхні Землі через 8,5 хв , випускається поверхнею нашого світила . Антинейтрино , що випускається і з надр Сонця, досягає Землі менше ніж за 9 хв, не взаємодіючи по дорозі ні з чим. Біля 10% енергії , що випромінюється Сонцем , забирає антинейтрино. На поверхні Землі густина потоку антинейтрино повинна дорівнювати 10 частинок/(смІ с). Поки-що зафіксувати таке випромінювання не вдалося.

В наш час відомими нам закономірностями не можна пояснити інтенсивність випромінювання квазарів , які ми спостерігаємо, не все зрозуміло в процесах утворення чорних дірок , не знайдено на досліді антинейтринне випромінювання Сонця, яке повинно супроводжувати термоядерну реакцію в надрах нашого світила.

Зміщення спектральних ліній доказує , що галактики розбігаються , чим дальше від нас галактика , тим більша її швидкість зникнення . Причини розбігання ми не знаємо , але існує думка , що колись всі галактики почали розбігатися з однієї точки . Тоді в цій точці повинна була вибухнути якась частинка , енергія якої розподілилася між всіма галактиками , які виникли внаслідок цього вибуху. Так наука про макрокосмос – астрономія – поєднується з наукою про мікрокосмос – фізикою елементарних частинок .

Цікавим являється питання про модель нашої Вселеної: чи припиниться коли-небудь розбігання галактик і чи воно буде продовжуватися вічно? Іншими словами, чи справедлива модель пульсуючої Вселеної? Існує гіпотеза, що наявність маси спокою у всіх нейтрино робить середню густину Вселеної достатньою для існування пульсуючої Вселеної.

Висновок

Роблячи висновок, можна назвати три моменти , які відзначають значення фізики елементарних частинок.

По-перше , фізика високих енергій вивчає фундаментальну структуру матерії , із якої побудований весь навколишній фізичний і біологічний світ . Вона являє собою природні продовження успішної традиції у фізиці , яка пройшла від вивчення макроскопічної матерії до молекул , атомів і ядер...

По-друге, розвиток спеціальної теорії відносності і квантової механіки залишило глибокий слід навіть у філософському мисленні людства. У своїй роботі над явищами при дуже високих енергіях і дуже малих відстанях фізики досліджують основну структуру не тільки речовини , але й простору часу, енергії електричного заряду . Це привело до глибоких змін самих основ фізики .

По-третє, ми живемо в епоху новітньої техніки , в якій людина починає маніпулювати все більш дрібними одиницями аж до атомних і субатомних розмірів.

Ряд фундаментальних відкриттів на початку 20ст– квантованості енергії і енергетичних рівнів електронів в атомах , єдності корпускулярних і хвильових властивостей у мікрочастинок , різноманітності типів елементарних частинок і їх властивостей, взаємодій і перетворень – все це привело до заміни електромагнітної картини якісно новою квантово-польовою картиною світу. Сучасна квантово-польова картина світу , як і будь яка інша наукова картина , ґрунтується на визнані матеріальності і єдності світу, загального зв'язку і зумовленості структурних рівнів, на визнанні невичерпності властивостей матерії і необмеженості її пізнання.

З погляду сучасної фізики , існують дві форми матерії – речовина і поле. Речовина має переривчасту (дискретну) будову, а поле – безперервну. Однак розвиток фізики показав , що поділ матерії на речовину й поле втратив абсолютний смисл . Ми знаємо , що кожному полю відповідають кванти цього поля : електромагнітному полю – фотони , ядерному – р-мезони тощо . В свою чергу всі частинки речовини мають хвильові властивості .За відповідних умов частинки речовини можуть перетворюватися в кванти відповідних полів і , навпаки, кванти полів можуть перетворюватися в частинки речовини .

Відображенням матеріальної єдності світу є також і те , що вся різноманітність різних форм руху мікрочастинок і макроскопічних тіл виявляється через чотири основних типи взаємодій : 1) сильну , яка здійснює зв'язок нуклонів у ядрах атомів ;2) електромагнітну , яка зумовлює зв'язок між електрично зарядженими частинками ; 3) слабку , яка зумовлює бета-розпад ядер і перетворення нейтрона в протон ; 4) гравітаційну , яка зумовлює тяжіння між всіма матеріальними об'єктами. Сильні й слабкі взаємодії разом з електромагнітними зумовлюють будову і властивості атомних ядер і елементарних частинок .