Смекни!
smekni.com

Трехфазный цепи (стр. 3 из 3)

.
(2)

Пусть u=Umsinwt и Imsin(wt-j ), тогда средняя мощность будет равна

(3)

т.к. интеграл второго слагаемого равен нулю. Величина cosjназывается коэффициентом мощности.

Из этого выражения следует, что средняя мощность в цепи переменного тока зависит не только от действующих значений тока I и напряжения U, но и от разности фаз j между ними. Максимальная мощность соответствует нулевому сдвигу фаз и равна произведению UI. При сдвиге фаз между током и напряжением в ± 90° средняя мощность равна нулю. Максимальные значения напряжения и тока любой электрической машины определяются ее конструкцией, а максимальная мощность, которую они могут развивать - произведением этих величин. Если электрическая цепь построена нерационально, т.е. сдвиг фаз j имеет значительную величину, то источник электрической энергии и нагрузка не могут работать на полную мощность. Поэтому в любой системе источник-нагрузка существует т.н. "проблема cosj", которая заключается в требовании возможного приближения cosj к единице.

Выражение (3) можно представить также с помощью понятий активных составляющих тока Iа и напряжения Uа в виде

P = UI cosj = U(I cosj ) = UIа= I(U cosj ) = IUа. (4)

Учитывая, что активные составляющие тока и напряжения можно выразить через резистивную состаляющую комплексного сопротивления цепи как Iа=U/R или Uа=IR , выражение (4) можно записать также в форме

P = I2R = U2/R. (5)

Среднюю мощность P называют также активной мощностью и измеряют в ваттах [Вт].

Выделим подинтегральную функцию выражения (3)

(6)

Отсюда следует, что мгновенная мощность изменяется с двойной частотой сети относительно постоянной составляющей UIcosj равной средней или активной мощности.

При cosj = 1 (j = 0) , т.е. для цепи, обладающей чисто резистивным сопротивлением

(7)

Временные диаграммы, соответствующие этому случаю приведены на рис. 1 а).

Положительные значения мгновенной мощности соответствуют поступлению энергии от источника в электрическую цепь. Следовательно, при резистивной нагрузке вся энергия поступающая от источника преобразуется в ней в тепло.

При cosj = 0 (j = ±p /2) , т.е. для чисто реактивной цепи

(8)

Временные диаграммы, соответствующие чисто индуктивной и чисто емкостной нагрузке приведены на рис. 1 б) и г). Из выражений (8) и временных диаграмм следует, что мощность колеблется относительно оси абсцисс с двойной частотой, изменяя свой знак каждые четверть периода. Это означает, что в течение четверти периода (p > 0) энергия поступает в электрическую цепь от источника и запасается в магнитном или электрическом поле, а в течение следующей четверти (p < 0) она целиком возвращается из цепи в источник. Так как площади, ограниченные участками с положительной мощностью и с отрицательной одинаковы, то средняя мощность отдаваемая источником нагрузке равна нулю и в цепи не происходит преобразования энергии.

В общем случае произвольной нагрузки 1 > cosj > 0 ( 1< |j | < p /2) и

(8)

Как следует из временных диаграмм рис. 1 в), большую часть периода мощность потребляется нагрузкой (p > 0), но существуют также интервалы времени, когда энергия запасенная в магнитных и электрических полях нагрузки возвращается в источник. Участки с положительным значением p независимо от характера реактивной составляющей нагрузки всегда больше участков с отрицательным значением, поэтому средняя мощность P положительна. Это означает, что в электрической цепи преобладает процесс преобразования электрической энергии в тепло или механическую работу.

Рассмотрим энергетические процессы в последовательном соединении rLC (рис. 2). Падение напряжения на входе цепи уравновешивается суммой падений напряжения на элементах u=ur+uL+uC . Мгновенная мощность в цепи равна

ui=uri+uLi+uCi
(9)

Пусть напряжение и ток на входе равны u=Umsinwt и Imsin(wt-j ). Тогда падения напряжения на элементах будут ur= rImsin(wt-j ), uL= wLImsin(wt-j +p /2) = xLImsin(wt-j +p /2), uC= Imsin(wt-j -p /2)/(w C) = xCImsin(wt-j -p /2). Подставляя эти выражения в (9), получим

(10)

Уравнение (10) в левой и правой частях имеет постоянную и переменную составляющие. Постоянная составляющая представляет собой активную или среднюю мощность. Второе слагаемое в правой части это переменная составляющая активной мощности с амплитудой равной P = UIcosj . Третье слагаемое правой части также является переменной составляющей мгновенной мощности, но эта составляющая находится в квадратуре с переменной составляющей активной мощности и имеет амплитуду Q = UIsinj . Эту величину называют реактивной мощностью. Она равна среднему за четверть периода значению энергии, которой источник обменивается с магнитным и электрическим полями нагрузки. Реактивная мощность не преобразуется в тепло или другие виды энергии, т.к. ее среднее значение за период равно нулю.

Реактивную мощность также можно представить через реактивные составляющие тока или напряжения

Q = UI sinj = U(I sinj ) = UIр= I(U sinj ) = IUр. (11)

В отличие от всегда положительной активной мощности, реактивная мощность положительна приj > 0 и отрицательна приj < 0 .

Из условия равенства переменных составляющих левой и правой частей уравнения (10) можно найти связь между P, Q и S = UI в виде

(12)

Величина S называется полной или кажущейся мощностью. Из выражения (12) следует, что полную мощность можно представить гипотенузой прямоугольного треугольника с углом j , катетами которого являются активная и реактивная мощности.

Таким образом, полная мощность это максимально возможная активная мощность, т.е. мощность, выделяющаяся в чисто резистивной нагрузке (cosj = 0). Именно эта мощность указывается в паспортных данных электрических машин и аппаратов.

Реактивные составляющие токов и напряжений можно представить через активные и реактивные составляющие комплексного сопротивления, тогда для составляющих мощности

P = UIа= I2R = UаI = U2/R = U2G ;

Q = UIр= I2X = UрI = U2/X = U2B ;

S = UI = I2Z = U2/Z = U2Y.

(13)

Треугольник мощностей можно описать также с помощью комплексных чисел и изобразить векторами на комплексной плоскости в виде

,
(14)

где S - комплексная полная мощность,

- сопряженный комплексный ток.

Пользуясь представлением активной и реактивной составляющих мощности через активные и реактивные составляющие токов и напряжений (выражения (4) и (11)), треугольник мощностей можно построить в двух вариантах (рис. 3 а) и б)). В первом случае активная и реактивная составляющие полной мощности выражаются через активную и реактивную составляющие напряжения U и треугольник мощностей получается изменением масштаба треугольника напряжений (рис. 3 а)). Во втором случае (рис. 3 б)), построение выполнено с помощью активной и реактивной составляющих тока I.

Очевидно, что все виды мощности имеют одинаковую размерность, поэтому для их отличия от активной мощности, измеряемой в ваттах [Вт], для полной мощности введена единица, называемая вольт-амперы [ВА], а для реактивной мощности - вольт-амперы реактивные [ВАр]

Выражение для активной мощности P = UIcosj позволяет определить коэффициент мощности с помощью ваттметра, вольтметра и амперметра.

Для этого на вход цепи включают приборы по схеме рис. 4 и по их показаниям определяют коэффициент мощности в виде

,

где W, V и A - показания соответственно ваттметра, вольтметра и амперметра действующих значений. Из этого выражения можно также определить угол сдвига фаз j между током и напряжением на входе двухполюсника.

·Обзорные статьи

·Промо-статьи

·Презентации

·Качество электроэнергии

·Учебные пособия по электротехники для самостоятельного изучения

·Рефераты по электротехнике и радиоэлектронике

Учебное пособие по курсу электротехники
Электрические микромашины. Курс лекций
Общая Электротехника. Учебное пособие
Сборник лекций по теоретическим основам электротехники

Карта сайта