Смекни!
smekni.com

Билеты по Курсу физики для гуманитариев СПБГУАП (стр. 3 из 9)

8.Принцип отнсит-ти Галилея. Преобразования Галилея. Галилей ввел понятие инерц. системы отсч., в кот. тело сохраняет сост. покоя или =мерного прямолинейного движения, if на него не действуют друг. тела (силы).Принцип отнсит-ти Галилея: все физические законы не меняются (инвариантны) в разных инерц. сист. отсч.. Или все законы механики инвариантны при применении к ним преобр. Галилея. Для перехода из 1ой инерц. системы отсч. в друг. Галилей ввел преобр.. Пусть имеется инерциальная сист. отсч., полож. тел в кот. задается декартовыми координатами. Например, точка А на рис. 10.3. Кроме системы коорд. XYZ (обозначают К), может быть и другая инерциальная сист. коорд., например, X'Y'Z' (назовем ее К'). Инерциальная сист. коорд. К' движется с пост. скор-тью u относит. системы К. Пространство изотропное, в нем не сущ-вует выделенного направл-я, поэтому удобно выбрать направл. оси OX совпадающим с направлением скор. u. Т.е. сист. К' движется вдоль оси OX системы отсч. К. Полож-е тчки А в сист-е К задается вектором r(x,y,z) или его проекциями на оси OX, OY и OZ, кот. равны, соответственно, x, y и z. Полож-е той же тчки в сист-е К' задаются координатами x', y' и z'. Связь между x, y, z и x', y', z' дается преобразованиями Галилея: x'=x+ut; y'=y;z'=z; t'=t. Дополнительно к преобразованиям коорд. введено преобразование времени (конц-я дальнодействия). Инвариантность означает независимость, неизменность относит. каких-либо физических усл-ий. В математике под инвариантностью понимается неизменность величины относит. каких-либо преобр.. Рассмотрим, какие параметры не меняются при преобразованиях Галилея, т.е. явл. инвариантами этих преобр.. Первый-время. При переходе от 1ой инерц. системы отсч. к другой не меняется как само время t=t', так и длительность какого-либо события 'дельта't : 'дельта't'= t'2 -t'1 = t2 -t1 = 'дельта't (10.2) Помимо времени, неизменным остается расстояние между двумя точками. Обозначим расстояние между точками А и В через l в сист-е K и l' в сист-е K'. Координаты этих точек, соответственно, xA, yA, zA, xB, yB, zB в сист-е K и x'A, y'A, z'A, x'B, y'B, z'B в сист-е К'. Расстояние между точками опр-ся их координатам по теореме Пифагора: l' = 'корень'( (x'A-x'B)^2 + (y'A-y'B)^2 + (z'A-z'B)^2 ) = 'корень'( (xA + vt - xB -vt)^2 + (yA-yB)^2 + (zA-zB)^2 ) =l. (10.3) Продифференцируем по времени соотношения (10.1) и получим преобр. Галилея для скоростей: V'x=dx'/dt=dx/dt + u=Vx+u; V'y=dy'/dt=dy/dt=Vy; V'z=dz'/dt=dz/dt=Vz; (10.4) Продифференцируем по времени и получим з-н преобр. ускорений при переходе из 1ой инерц. системы отсч. в друг.: a'x=dV'x/dt=dVx/dt + du/dt=dVx/dt=ax; a'y=dV'y/dt=dVy/dt=ay; a'z=dV'z/dt=dVx/dt=ax; (10.5). Из этих выражений видно, что все 3 проекции ускорения на оси коорд. остаются неизмен. при переходе из системы отсч. К в К'. Тким обрзом, ускорение тоже явл. инвариантом преобр. Галилея. З-н сохранения масы был сформулирован уже после Галилея и Ньютона. Но, добавим, что в класич. механике маса тела не зависит от выбора системы отсч. и также явл. инвариантом преобр. Галилея.

9. З-ны класич. механики и их инвариантность относит. преобр. Галилея. Первый з-н Ньютона. Всякое тело в инерц. сист-е отсч. сохраняет сост. покоя или =мерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это сост.. 2й з-н Ньютона. Ускорение тела прямо пропорционально сумме сил, действующих на него и обратно пропорционально его массе. Запишем этот з-н в векторной форме с учетом кинематических соотношений: 'сумма'F(вектор)(t)=ma(вектор)(t)=mdv(вектор)(t)/dt=m(d^2)r(вектор)(t)/d(t^2 ) (10.6.a); 'сумма'F(вектор)(t)= mdv(вектор)(t)/dt=d(mv(вектор)(t))/dt=dP(вектор)(t)/dt (10.6.б). З-н Ньютона, записанный в виде (10.6.а) или (10.6.б) с мат. тчки зрения имеет вид ДУ. Любая из формулировок (10.6.а,б) 2го з-на Ньютона наз. основным уравнением динамики. Решение этого уравнения явл. осн. задачей динамики (по известному закону движения тела r(t) найти действующие на это тело силы, в обратной задаче по известной зависим. действующих сил от времени 'сумма'F(t) требуется найти з-н движения тела r(t)). 3й з-н Ньютона. Силы, с которыми взаимодействуют тела равны по величине, противоположны по направл-я и направлены вдоль линии взаимдейст.. Этот з-н утверждает, что силовое воздействие на тело носит хар-ер взаимдейст.. Этот же з-н утверждает, что взаимдейст. всех тел явл. центральными. З-н всемирного тяготения, открытый Ньютоном, иногда называют четвертым з-ном Ньютона. F(вектор)=G(m1)(m2)/r^2 * r(вектор)/r (10.7), где (r(вектор)/r ) единичный вектор, направленный вдоль линии взаимдейст., определяющий направл. гравитационной силы F(вектор). Тело, двигающееся прямолинейно и =мерно относит. системы отсч. К, вследствие уравнений (10.4) движется также прямолинейно и =мерно относит. системы отсч. К'. Это обозначает, что первый з-н Ньютона справедлив во всех инерц. сист. отсч.. В сист-е коорд. К форма записи 2го з-на Ньютона опр-ся уравнениями (10.6). Поскольку, ускорение и маса инвариантны относит. преобр. Галилея, ур-е (10.6) одинаково записывается в различн. инерц. сист. отсч.. Поскольку, величина силы не меняется при переходе от 1ой инерц. системы отсч. к другой, третий з-н Ньютона тоже инвариантен относит. преобр. Галилея. 4й з-н не нуждается в доказательстве инвариантности относит. преобр. Галилея, поскольку расстояния, масы и силы не меняются при переходе из 1ой инерц. системы отсч. в друг.. ТО., все законы Ньютона инвариантны относит. преобр. Галилея. Это знчит, что они справедливы и записываются одинаковым обрзом во всех инерц. сист. отсч..

(28) Часто, кроме круговой частоты колебаний 'амега'=2'Пи'/T используют циклическую частоту 'ню'=1/T. Частота измеряется в Герцах, 1 Гц - это 1 колебание в секунду. В общем случае вместо смещения тчки среды из положения равновесия можно ввести люб. "колеблющийся" параметр. Для звуковых волн таким параметром явл. давление газа в даной точке прост-ва. Звуковые волны - продольные волны и физически сводятся к процессу распространения в газе колебаний давления. Эти колебания обычно создают путем колебаний мембраны перпендикулярно ее плоскости. Возникающие перепады давления и представл. собой звуковую волну. Область частот, кот. слышит человеческое ухо лежит в диапазоне 20-20000 Гц. Другим чрезвычайно важным видом волн явл. электромагнитные волны. Электромагнитные волны могут возникать и распространятся в пустом прост-ве, т.е. в вакууме. Из уравнений Максвелла след., что переменное магнитное поле создает вокруг себя в прост-ве переменное электрическое поле. В свою очередь, переменное электрическое поле создает вокруг себя в прост-ве переменное магнитное поле. Этот процес приводит к появлению в прост-ве некоторой волны - электромагнитной волны. Эта волна явл. поперечной. Напряженности электрического и магнитного полей волны перпендикулярны друг другу и направл. распространения волны. На рис.18.5 показаны напряженности электрического и магнитного полей в бегущей волне.Особенностью электромагнитных волн явл. то, что для их распространения не требуется никакой среды. Переменные электромагнитные поля могут распространяться в вакууме. Для количественного описания волн вводят 2 понятия: интенсивность волны и объемную плотность энергии волны. Интенсивность волны - это средняя по времени эн-я, переносимая волнами через единичную пл-дь, параллельную волновому фронту, за единицу времени. Объемная плотность энергии - это эн-я волн, приходящаяся на единицу объема. Волна - это процес распространения колебаний в прост-ве (в упругой среде , как это имеет место для звуковых волн, или в вакууме, как это имеет место для электромагнитных волн). Энергия колебаний опр-ся амплитудой и частотой. Она ~ квадрату амплитуды колебаний. В сист-е СИ интенсивность волны выражается в Вт/м2. Без вывода приведем выражения для интенсивности и скор. звуковой и электромагнитной волн. Для звуковой волны: J = 1/2 * pvA^2w^2 Vii=sqrt(E/p); Vi=sqrt(G/p) где А - амплитуда колебаний среды, 'амега' - частота, (, (//, (( - скорость волны, продольной и поперечной, 'ро' - плотность среды, в кот. распространяется звуковая волна, E - коффициент Юнга, G - коэф. сдвига. Распространение звука в упругой среде связано с объемной деформацией. Поэтому давление в кажд точке среды непрерывно колеблется с частотой 'амега' вокруг некоторого среднего значения. Давление, вызванное звуковой деформацией среды наз. звуковым давлением. Наше ухо воспринимает звуковые давления неодинаково на разных частотах. Область частот ,кот. воспринимает ухо лежит в диапазоне 20 - 20000 Гц. Наибольшей чувствительностью ухо обладает в диапазоне частот около 1000 Гц. На этих частотах ухо способно воспринимать звуки, звуковое давление в кот. отл-ся на 7 порядков. Для интенсивности электромагнитной волны справедливо: J=1/2*EoHo=1/2*sqrt(E*Eo/M*Mo)*Eo^2=1/2*sqrt(M*Mo/E*Eo)*Ho^2; где Eо и Hо амплитуды напряженности электрического и магнитного полей, 'эпсилонт'(E) и 'мю'(M) диэлектрическая и магнитная проницаемости среды, 'эпсилонт'о (Eo) и 'мю'о (Mo) диэлектрическая и магнитная проницаемости вакуума - постоянные, введенные в сист-е СИ. Скорость распространения электромагнитных волн в среде =а V=1/sqrt(EMEoMo);, В вакууме E=M=1, поэтому скорость электромагнитной волны в вакууме будет =а c=1/sqrt(EoMo) = 3*10^8 m/c. Как видно, она расна скор. света в вакууме - с, что не удивительно, поскольку свет явл. электромагнитными волнами.