10. Детерминизм класич. механики. Под детерминизмом понимается философское учение об объективной закономерности, взаимосвязи и причинной обусловленности всех явлений мат. и духовного мира. Центральным ядром детерминизма явл. полож. о причинности. Идея детерминизма сост. в том, что все явл-я и события в мире не произвольны, а подчиняются объективным закономерностям, независимо от наших знаний о природе явлений. Всякое следствие имеет свою причину. детерминизм Лапласа(1749 - 1827). Согласно классическому механистическому детерминизму сущ-вует строго однозначная связь между физическими величинами, хар-еризующ. сост. системы в какой-то момент времени (координаты и импульсы) и значениями этих величин в люб. последующий или предыдущий моменты времени. Принцип механического детерминизма. If известны начальные координаты и скор. тел системы, а также законы взаимдейст. тел, то можно определить сост. системы в люб. последующий момент времени. Отметим, что для успешного практического решения подобных задач законы взаимдейст. тел нужно знать очень точно, либо нужно смириться с тем, что расчет будет адекватно описывать поведение системы лишь в ограниченном временном интервале. Связано это с тем, что неточности расчета имеют свойство накапливаться и искажать получающуюся картину, - чем дальше, тем больше. Кроме того нужно иметь ввиду, что для решения задачи о движении большого кол-ва взаимодействующих тел нужно задать очень больш кол-во начальных данных, законов взаимдейст. и решать очень громоздкую систему дифференциальных уравнений. С позиций сегодняшних знаний о природе можно утверждать, что механистический детерминизм Лапласа не работает в микромере, где процесы взаимдейст. частиц по своей природе явл. вероятностными. При столкновении 2х атомов 1 из них может возбудиться (перейти в возбужденное сост.), а может и остаться в основном, невозбужденном сост.. В последнем случае атомы будут сталкиваться как идеально упругие шары, в первом случае как неупругие шары. Результаты столкновения в этих случаях будут сильно различаться, а решить, как будет происходить взаимдействие, до того как оно произойдет, в принципе невозможно. В микромире могут одновремено протекать процесы, кот. абсолютно несовместимы в макромире. Когда описывается квантовая микросистема, предсказывается ее поведение в рамках вероятностного описания, но не дается однозначного ответа, как конкретно она будет себя вести. При этом всегда остаются в силе причинно-следственные связи.
11. РАБОТА, кинетическая эн-я.Энергия- наиболее общая количественная мера движения и взаимдейст. материи. Для изолированной системы эн-я остается пост., она может переходить из 1ой формы в друг., но ее кол-во остается неизменным. If сист. не изолирована, то эн-я может изменятся при одновременном изменении энергии окружающих тел на такую же величину или за счет энергии взаимдейст. тел внутри системы. При переходе системы из одного состояния в другое ее эн-я не зависит от того, каким путем произошел этот переход. Энергия системы в общем случае может переходить в друг. формы материи. Поскольку сущ-вует многообразие форм движения материи, сущ-вует и многообразие видов энергий: кинетическую, потенциальную и полн механическую энергию. Работа силы- мера действия силы, кот. зависит от численной величины силы и ее направл-я, от перемещения тчки приложения силы. If сила F постояна по величине и направл., а перемещение происходит вдоль прямой, то работа =а произведению силы на величину перемещения и косинус угла между направлением силы и перемещением. работа - величина скалярная. Единицей измерения Джоуль (Дж). В общем случае для вычисления работы под действием переменной силы на криволинейном участке траектории вводят элементарную работу dA. Считаем, что на бесконечно малом участке пути dr сила не меняется и элементарная работа dA опр-ся как: dA=F*dr*cos'альфа'=(F'вектор'dr'вектор') (11.2). Работа - величина аддитивная; работа силы на конечном участке пути (1)R(2) опр-ся как сумма элементарн. работ. Суммирование по бесконечно малым величинам dА есть операция интегрирования: A12='интеграл от 1 до 2'(F(вектор)dr(вектор)) (11.3), где интегрирование ведется вдоль траектории. В векторном анализе такой интеграл наз. циркуляцией вектора силы. Заметим, что в этом выражении легко перейти к другой переменной интегрирования, ко времени. A12='интеграл от 1 до 2'(F(вектор)dr(вектор)) = 'интеграл от t1 до t2'((F(вектор)V(вектор))dt)= 'интеграл от t1 до t2'(Ndt) (11.4). Введенная здесь величина N наз. мгновеной механической мощностью или просто мощностью тела. N=dA/dt=(F(вектор)dr(вектор)/dt)=(F(вектор)v(вектор)) (11.5). Что будет происходить с системой (в простейшем случае -с мат. точкой) при совершении работы над ней. Запишем элементарную работу и выразим силу в нем при помощи 2го з-на Ньютона. dA=(F(вектор)dr(вектор))=m(a(вектор)dr(вектор))=m(dv(вектор)dr(вектор))/dt=m (dv(вектор)v(вектор))=md(v(вектор)v(вектор))/2=md(v^2)/2=d(mv^2/2) (11.6) Слева стоит элементарная работа, а справа дифференциал некоторой ф-и ,имеющий размерность работы и зависящий от скор.: дифференциал ф-и скор., опред-мой совершеной работой. Пусть в начальный момент времени t0 скорость тела равнялась (0. Полную работу за промежуток времени от t0 до t1 получим после интегрирования dA, как это сделано в формуле (11.4). Совершаемая над телом работа привела к увеличению его скор..Теперь можно ввести понятие кин. энергии: A01=m(v1)^2/2 - m(v0)^2/2 = Ek1-Ek0. (11.7) Кинетическая эн-я опр-ся работой, кот. совершена над телом. Положительная работа приводит к увеличению скор. тела и к увеличению кин. энергии, отрицательная - к уменьшению того и другого. If сист. сост. из многих тел, то ее кинетическая эн-я складывается из кинетических энергий всех тел.