Давайте введём понятие «материальная точка». Это настолько малая частица вещества, что её можно практически сопоставить с математической точкой. Координаты материальной точки в четырёхмерном континиуме Декартовой системы координат: x, y, z, t. Материальные тела состоят из материальных точек. Две разные материальные точки не могут иметь одни и те же пространственные координаты x, y, z в один и тот же момент времени t. Этому препятствует кулоновское отталкивание, принцип Паули, статистика бозонов, из которых состоят материальные объекты, что угодно. В разные же моменты времени две разные материальные точки могут иметь одну и ту же пространственную координату: x, y, z, t1 и x, y, z, t2. Вы идёте по заснеженной тропинке и видите на ней следы. Вдруг узнаёте: «О! Это же мои собственные следы! Это я здесь прошёл вчера» - и идёте след в след собственным вчерашним следам. То есть Вы можете занять координаты себя вчерашнего, но встретиться с собою вчерашним Вы не можете ни каким способом. Время необратимо. Так и пассажиры поезда в упомянутом фильме, если гипотетически предположить, что у них время действительно замедлилось в результате поездки на поезде на величину Δt=t2-t1, после этого могут сколько угодно искать своих родственников, друзей и знакомых по всему пространству x, y, z, t1 и никогда их больше не встретить, поскольку составляющие их друзьям и знакомым материальные точки находятся в координатах x, y, z, t2=t1+Δt. Другими словами при реальном локальном изменении хода физического времени объекты должны были бы исчезать из нашего мира, потому что объект попадает в непересекающуюся с исходной область координатного континиума. Но это физически не реализуемо, не только потому, что мы подобных случаев на практике не наблюдаем. Сосуществование в одном месте бесконечной череды миров (а значит и бесконечной массы), соответствующих разным моментам времени совершенно физически не реально. Реально физически реализуем только один единственный мир в один единственный момент времени, что и соответствует концепции классического абсолютного времени. С другой стороны, то, что изменения в ходе часов не являются изменением хода времени (если при этом часы не исчезают), не значит, что единственного для всех времени не существует. Возникает вопрос: а почему физические процессы, используемые в разного рода часах, протекают так достаточно стабильно и одинаково в разных местах Земли и в разное время? Например, атомные часы, независимо изготовленные в США и России, в пределах погрешности (из-за влияния случайных внешних и внутренних факторов) идут одинаково на разных континентах в течение многих десятилетий. Это, во-первых, свидетельствует в пользу правильности классических представлений об абсолютном времени во всей Вселенной (Земля за эти десятилетия проделала во Вселенной немалый путь), а, во-вторых, наводит на мысль, что в основе такого совпадения лежит какой-то пока неизвестный периодический процесс, происходящий одинаково во всём материальном мире на микроуровне.
Акельев Н.М. г. Волгоград 10.02.2010-22.03.2010
Обсудим время жизни нестабильных частиц при скоростях, близких к скорости света. В качестве экспериментального подтверждения СТО приводят вот такие данные (И.В. Савельев «Курс общей физики» т. 1, М, «Наука», 1977, 416 с., с. 227)
В этом фрагменте надувательством является всё. Начиная с того, что длина эталона в движущейся системе согласно официальной формуле СТО сокращается, следовательно, измеренное этим эталоном расстояние увеличивается, а не уменьшается, как это пишет И.В. Савельев. Вывод об увеличении времени жизни μ-мезонов проповедники СТО делают здесь на основе факта их обнаружения у поверхности земли. Но нестабильные частицы, включая μ-мезоны образуются в атмосфере на любой высоте и даже под землёй в результате воздействия космических лучей высоких и сверхвысоких энергий. Это хорошо известный факт. Вот, например фрагмент популярной книжки "Невидимое оставляет след" И. Беккерман, М, "Атомиздат", 1970, 208 с., с.69-71
То есть данное «доказательство» проповедников СТО рассчитано на полное невежество и отсутствие умственных способностей у тех, кому оно адресовано. Мезоны получают на ускорителях, сталкивая частицы, разогнанные до высоких энергий с различными мишенями. Аналогичный процесс происходит и в природе. В космических лучах присутствуют частицы высоких и сверхвысоких энергий. Среди них встречаются даже такие, энергия которых превышает энергию, которую собираются достичь на знаменитом, недавно построенном адронном коллайдере. Частицы космических лучей пронизывают всю атмосферу Земли вплоть до поверхности и даже уходят под землю. При столкновении этих частиц с молекулами газов атмосферы происходят такие же процессы, которые происходят при бомбардировке мишеней в ускорителях. Рождается весь спектр короткоживущих микрочастиц, включая мезоны. Я не стану утверждать, что это единственный механизм образования мезонов вблизи поверхности земли, но точно могу утверждать, что он является основным. Поэтому делать вывод об увеличении времени жизни мезонов на основании факта их обнаружения у поверхности земли, мягко говоря, не корректно.
Однако точно такой же вывод (об увеличении времени жизни) делается по отношению времени жизни частиц, ускоренных в ускорителях. В ряде публикаций делается вывод о том, что время жизни частиц в ускорителях возрастает в строгом соответствии с формулой СТО о замедлении собственного времени. Оригиналы статей не доступны в Интернет. Но одно можно сказать определённо: авторы не бежали с секундомером в след за нестабильной частицей со скоростью, близкой к скорости света, замеряя время её жизни. Можно так же определённо сказать, что нестабильные частицы на ускорителях не ускоряют, потому что не успеешь начать её ускорять, как она уже распалась. В ускорителях ускоряют стабильные частицы: электроны, протоны, α-частицы, ионы. А нестабильные частицы получаются в результате бомбардировки разогнанными стабильными частицами различных мишеней. Вывод о времени жизни нестабильных частиц делается по факту обнаружения их на определённом расстоянии от мишени ускорителя. Поскольку формула СТО предсказывает увеличение времени жизни нестабильных частиц при скоростях, близких к скорости света, вплоть до бесконечности, то при времени жизни, скажем, в 1 секунду, частицу надо обнаружить на расстоянии 300000 километров от мишени ускорителя. Так измерениями на малых скоростях установлено, что μ-мезон имеет время жизни 2.2 мкс. То есть без увеличения времени жизни такой мезон можно обнаружить при скорости, близкой к скорости света на расстоянии 660 метров от мишени и более. Частицы с большим временем жизни надо регистрировать на больших расстояниях. Возникает вопрос: а не те же ли самые мезоны, образующиеся от воздействия космических лучей, при этом регистрируют? Такие мезоны можно обнаружить на любом расстоянии от мишени ускорителя и, тем самым, «подтвердить» по этой методике любое наперёд заданное «время жизни». Согласно идее А. Эйнштейна в каждой нестабильной частице имеются часы, работающие в строгом соответствии с требованиями СТО. Реальные часы, как показано в приложении №12 работать в соответствии с требованиями СТО не могут. Поэтому только в нестабильных частицах имеется требуемый механизм. И это не какие-нибудь там примитивные шестерёнки с пружинками. Достаточно сказать, что они должны включать в себя блок телепатической связи с проповедником СТО, чтобы узнать у него, с какой скоростью частица движется относительно мишени ускорителя? Потом в них должен быть блок вычислительного устройства, который по полученной от проповедника СТО через телепатический канал связи скорости и формуле СТО производит расчёт замедления пространства-времени. Наконец, в них должен быть генератор случайных чисел, поскольку распад частиц является процессом стохастическим. И всё это в ударопрочном исполнении. Короче, человечеству ещё на макроуровне подобной сложности аппарата не удалось пока создать, а тут надо его впихнуть в размеры чуть больше электрона.
Рассмотрим опыт Бэйли и др. по измерению времени жизни релятивистских положительных и отрицательных μ-мезонов в кольцевом хранилище мезонов ЦЕРН. Статья J. Bailey etc. “Measurements of relativistic time dilation for positive and negative muons in a circular orbit” Nature, Vol. 268, 28 Julay, 1977. Текст статьи в формате pdf размещён на сайте http://ivanik3.narod.ru/linksLighfMeson.html Я не всё понял в статье, поскольку не являюсь специалистом в данной области. Но то, что понял, вызывает у меня большое недоумение. Во-первых, в статье делается заявление об экспериментальном подтверждении «парадокса близнецов» (!). Авторы являются большими оптимистами и не понимают смысла слова «парадокс». Парадокс, это противоречие, экспериментально подтвердить которое невозможно. Мол, получены экспериментальные данные, можно скорректировать в соответствии с ними теорию. А для этого надо, всего на всего, отказаться от принципа относительности А. Эйнштейна, то есть от самой СТО. Ещё авторы делают оптимистичное заявление, что предсказания СТО подтверждаются при наличии ускорений до 1018 g (!). А «большие знатоки» СТО утверждают, что СТО не применима к неинерциальным системам. Но, давайте пытаться разбираться в эксперименте. μ-мезоны получались из π-мезонов, которые инжектировались в кольцевую камеру хранилища мезонов. В этой камере заряженные частицы относительно длительное время могут сохраняться, вращаясь по инерции по кольцевой траектории под действием магнитного поля. π-мезоны являются чрезвычайно короткоживущими частицами. Практически сразу после инжектирования они распадались, превращаясь в μ-мезоны. Каждый μ-мезон (отрицательный) в свою очередь распадается на электрон и 2 нейтрино. В опыте было определено, что скорость мезонов составляла V=0.9994C, при этом время жизни мезонов, составляющее при малых скоростях 2.2 мкс, увеличилось в 29.3 раза в точном соответствии с формулой замедления пространства-времени СТО и составила 64,46 мкс. с точностью доли процента. Ранее с точностью в 1% такие же результаты были получены теми же авторами при другой скорости для увеличения времени жизни в 12 раз. Казалось бы, имеем блестящее подтверждение СТО. Но. Время жизни мюонов определялось регистрацией не самих мюонов, а электронов, получающихся в результате их распада. Электроны, в отличие от мюонов, являются стабильными частицами. Их обнаружить можно спустя любое время после распада мюона. Абсолютно однозначно можно утверждать, что электроны регистрировались не мгновенно после распада мюона. Электрон является такой же отрицательно заряженной частицей, как и мюон. После распада мюона получившийся из него электрон продолжает вращаться по той же кольцевой траектории (импульс сохраняется). Постепенно радиус вращения уменьшается из-за потери импульса на столкновения с частицами неидеального вакуума. Детекторы электронов в установке были расположены на внутренней стороне кольца. То есть, чем больше начальный импульс электронов, тем дольше они вращаются по инерции, не попадая на детектор, тем больше по этой методике «время жизни» мюонов. А на самом деле регистрируемая величина к времени жизни мюонов не имеет ни какого отношения. Косвенно за это говорит фраза из статьи: «In the optimum running conditions very few muons were lost afte 100 μs» «В оптимальных условиях в эксперименте спустя 100 мкс после инжектирования регистрировалось уже крайне мало потерянных мюонов» На внутренней стороне кольцевого хранилища мезонов вместе с детекторами электронов были установлены детекторы «потерянных» мюонов. Спустя 100 мкс. после инжектирования события регистрации этих мюонов становились крайне редкими. В физике термин «время жизни» нестабильных частиц означает не совсем то, что подразумевается под этими словами в обыденной жизни. Он означает постоянную времени, с которой по экспоненциальному закону убывает количество нестабильных частиц в следствие распада. Иными словами время жизни мюонов 2.2 мкс. означает, что за 2.2 мкс. количество исходных мюонов в результате распада уменьшится в 2.71829 раза. При нормальном времени жизни мюонов 2.2 мкс. через 100 мкс. их исходное количество уменьшится в e-45 раз, и детектор будет обнаруживать только мюоны, образующиеся от космических лучей. Но при времени жизни 64,46 мкс. за 100 мкс. их исходное количество уменьшится всего в e-1.5 =4.7 раза. Для прекращения регистрации «потерянных» мюонов при таком времени жизни, это рановато. На Рис.1 в статье показано, когда детектор «потерянных» мюонов реально обнаруживал мюоны во время эксперимента. Это происходило примерно в течении 300 мкс. после инжектирования при условии, если не была проведена процедура обрезки пучка. Авторы объясняют это тем, что мюоны сталкиваются со стенками камеры, теряют энергию и попадают в детектор. Чтобы устранить этот эффект в течение 10 мкс. после инжектирования пучок частиц искусственно смещался электрическим полем на некоторое расстояние в сторону стенок. Потом смещающее поле отключалось. Тем самым пучок частиц обрезался так, что крайние частицы уже не попадали на стенки. После проведения процедуры обрезки детекторы регистрировали, практически, только электроны. Потерянные мюоны регистрировались только на уровне фоновых значений. У меня лично такое мнение, что мюоны распались с обычной для них постоянной времени 2.2 мкс., а дальше по кольцу вращались только электроны. Первоначальная энергия у мюонов была очень высокая: около 3 Гигаэлектронвольт. При распаде некоторое количество энергии уносили с собою нейтрино. Сколько именно? – в статье не говорится. В Интернет упоминаются значения энергии нейтрино при распаде мюона – несколько десятков электрон-вольт. У электронов, образовавшихся в результате распада, оставалась очень большая энергия – порядка 2 Гигаэлектронвольт. При столкновении частиц таких энергий со стенками камеры (до и без обрезки пучка) рождались нестабильные частицы, включая мюоны, которые и регистрировались детектором «потерянных» мюонов. На Рис.2 в тексте статьи показан график интенсивности регистрации электронов в течение первых 10 мкс. после инжекции. Видно, что первые 9 мкс. спад происходит гораздо более интенсивно, чем в дальнейшем. На мой взгляд, это отражение не только процедуры обрезки пучка, но и период, когда реально распадались мюоны. За 9 мкс. от их исходного количества при времени жизни 2.2 мкс. остаётся 1.7%, и в дальнейшем распад мюонов уже не вносит существенного вклада в количество электронов, вращающихся по кольцу. Иными словами, никакого увеличения времени жизни релятивистских частиц, похоже, нет вообще. Как в случае природных мюонов, так и с использованием ускорителей вывод об увеличении их времени жизни делался на основе некорректной интерпретации экспериментальных данных. Хочу отметить, что релятивистский импульс в КЛФП зависит от начальной скорости мюонов по такому же закону, как и замедление пространства-времени в СТО. Релятивистский импульс в КЛФП: