Обозначим угол между касательными через
Найдем эти пределы, учитывая, что при
где ρ – радиус кривизны траектории в данной точке.
Подставив эти значения в ап получим:
Т.о. величины касательного, нормального и полного ускорений определяется формулами:
Касательное ускорение направлено по касательной к траектории (в сторону скорости при ускоренном движении и противоположно скорости – при замедленном) и характеризует изменение величины скорости.
Нормальное ускорение направлено по нормам к траектории к центру кривизны и характеризует изменение направления скорости.
1.6 Частные случаи движения точки
По виду траектории движение делится на прямолинейное и криволинейное. При прямолинейном движении ап = 0, т.к. ρ = ∞.
По изменению величины скорости движения делится на равномерные и неравномерные.
Движение называется равномерным, если величина скорости постоянна (V=const).
Закон равномерного движения:
S=S0+Vt (1.18)
Движение называется равномерным, если величина касательного ускорения постоянна.
Т.о. равномерное движение описывается двумя формулами:
Нормальное ускорение направлено от данной точки к оси вращения
Тема 2Простейшие движения тела
К простейшим движениям твердого тела относятся поступательное движение и вращательное движение вокруг неподвижной оси.
2.1 Поступательное движение твердого тела
Поступательным называется такое движение тела, при котором любой отрезок прямой проведенной в теле перемещается параллельно самому себе.
Это самое простое движение тела.
Оно описывается одной теоремой:
При поступательном движении тела все его точки описывают одинаковые, при наложении совпадающие траектории, и имеют одинаковые скорости и одинаковые ускорения.
Доказательство:
Проведем в теле произвольный отрезок АВ. При движении тела он остается параллельным самому себе (рис. 2.1). траектория точки А на величину АВ, т.е. они одинаковые.
Проведем из неподвижного центра О радиусы-векторы точек А и В (
Очевидно, что
Продифференцируем это векторное равенство по времени, учитывая, что
дифференцируя (2.1) по времени:
Так как точки А и В взяты произвольно, то все выводы справедливы для всех точек тела.
Следовательно, при поступательном движении тела его можно считать точкой и пользоваться формулами кинематики точки.
2.2 Вращение тела вокруг неподвижной оси
Вращательным называется такое движение тела, при котором хотя бы две точки, принадлежащие телу или жестко с ним связанные, во все время движения остаются неподвижными. Прямая, проходящая через эти две неподвижные точки называется осью вращения.
Проведем через ось вращения две полуплоскости: неподвижную І и подвижную II, жестко связанную с телом и вращающуюся вместе с ним (рис. 2.2).
Положением тела будет однозначно определяться углом φ между этими полуплоскостями. Угол φ называется углом поворота. Измеряется он в радианах. Положительное направление φ – против часовой стрелки, если смотреть навстречу оси Z.
Зависимость
φ = φ(t) (2.3)
называется уравнением вращательного движения.
Быстрота вращения характеризуется угловой скоростью ω. Средняя угловая скорость определяется как отношения приращения угла поворота ∆φ к промежутку времени ∆t, за который оно произошло.
Угловая скорость в данный момент времени:
Вектор угловой скорости
Формула перехода:
Изменение угловой скорости характеризуется угловым ускорением ε, которая определяется как первая производная от угловой скорости или вторая производная от угла поворота по времени:
Направлен вектор
2.3 Равномерное и равнопеременное вращение
Вращение называется равномерным, если угловая скорость постоянна, т.е. ω = const.
Закон равномерного вращения:
φ=φ0+ωt (2.6)
Вращение называется равнопеременным, если угловое ускорение постоянно, т.е. ε = const.
Но
Подставив сюда
2.4 Скорости и ускорение точек вращающегося тела
пусть за время dt тело повернулось на угол dφ, а точка М, находящаяся на расстоянии R от оси вращения, получила перемещение dS=ч* dφ (рис. 2.3).
Тогда скорость точки
Направлен вектор скорости
Найдем нормальное и касательное ускорение точки:
Нормальное ускорение направлено от данной точки к оси вращения.
Касательное ускорение направлено по касательной к округлости, которую описывает точка и совпадает с направлением скорости при ускоренном вращении, а при немедленном – противоположно скорости.