Смекни!
smekni.com

Модели атомных ядер (стр. 2 из 2)

U(r) = V(r) + iW(r),

где мнимая часть W(r) описывает поглощение частиц падающего пучка.
Успехи оптической модели в описании упругого рассеяния (см. рис.9) привели к пониманию механизма протекания прямых ядерных реакций, в принципе отличающегося от механизма протекания ядерных реакций через составное ядро. Малая величина мнимой части оптического потенциала, полученного из эксперимента (несколько МэВ) указывает на довольно большую длину свободного пробега нуклона в ядре. Таким образом, существует заметная вероятность того, что налетающий нуклон испытает одно взаимодействие с нуклоном ядра мишени, после чего один из этих нуклонов покинет ядро. Первая модель для описания прямых механизмов в реакциях (d,p) была предложена в 1950 году Батлером. Предполагая поверхностный характер реакции, можно с помощью простых квазиклассических соображений объяснить появление максимумов в угловых распределениях. Такие максимумы должны появляться при углах, для которых выполняется условие

l = qR,

где l - переданный ядру орбитальный момент, q - переданный импульс, R - радиус ядра. В середине 50-х годов для описания прямых механизмов был развит метод искаженных волн (МИВ), который можно рассматривать как обобщение оптической модели на неупругие каналы. В МИВ используется то, что в прямых реакциях налетающая частица передает свою энергию и импульс небольшому числу степеней свободы ядра. Это позволяет получить приближенное решение многочастичного уравнения Шредингера, используя теорию возмущения. Полный гамильтониан системы записывается в виде

H = H0 + Hост,

где H0 - гамильтониан системы из двух частиц, взаимодействие между которыми описывается оптическим потенциалом Vопт, Hост - гамильтониан остаточного взаимодействия, который рассматривается как малое возмущение, переводящее систему в конечное состояние. Процесс ядерной реакции разбивается на 3 этапа.

  1. Движение налетающей частицы в "искажающем" (оптическом) потенциале ядра мишени.
  2. Передача нуклонов под действием остаточного взаимодействия
  3. Движение вылетающей частицы в поле конечного ядра.

Модели прямых ядерных реакций использовались в основном для описания жесткой части энергетических спектров продуктов реакций, которая связана с возбуждениями изолированных состояний конечных ядер (рис.10).

Рис. 10. Экспериментальные угловые распределения для различных состояний конечного ядра 59Ni, возбуждаемых в реакции 58Ni(d,p)59Ni при энергии Ed = 15 МэВ, и результаты расчетов по методу искаженных волн. Все четыре случая различаются передачей орбитального момента l

Модели, использующие концепцию составного ядра претендовали на описание непрерывного спектра. Действительно, в спектрах вылетающих частиц при энергиях ускоряемых ионов, достижимых в обычных циклотронах, непосредственно за областью дискретных пиков начиналось характерное для процесса испарения непрерывное распределение. Однако по мере увеличения энергий ускоряемых ионов, в основном связанном со строительством изохронных циклотронов (Развитие ускорительной техники происходило так, что от циклотронов, ускоряющих, например, протоны до энергий ~10 Мэв сразу перешли к ускорителям на сотни МэВ. Область десятков МэВ долгое время была слабо исследована.), увеличивалась область между пиками, связанными с возбуждением дискретных состояний конечных ядер и испарительным распределением (см. рис.11), которую не могли адекватно описать существующие модели.

Рис. 11. Спектры протонов из реакции 59Fe (p,p'), измеренные под углом 300 в л.с. при энергиях протонов 28.8 и 61.7 МэВ

Высказывалось предположение, что эта область спектра формируется в результате процессов происходящих во время движения составной системы к равновесному состоянию - составному ядру. После появления в 1966 году пионерской работы Дж. Гриффина наметился экспоненциальный рост экспериментальных и теоретических работ, посвященных так называемым предравновесным процессам. Сегодня предравновесные процессы делят на два класса: многоступенчатые прямые процессы, в которых происходит эволюция открытых состояний, и многоступенчатые компаунд-процессы, связанные с эволюцией закрытых состояний и связи их с открытыми состояниями. Под открытыми состояниями понимаются состояния, в которых хотя бы один нуклон находится выше энергии связи и может вылететь. В закрытых состояниях все нуклоны находятся ниже энергии связи.
В реакциях с тяжелыми ионами в 70-е годы в Дубне группой В. Волкова был открыт новый тип ядерных реакций - реакции глубоконеупругих передач. Специфика глубоконеупругих передач обусловлена качественными изменениями процесса взаимодействия двух сложных ядер по сравнению с реакциями с легкими ионами. В основе этого взаимодействия лежат процессы формирования, эволюции и распада специфического ядерного комплекса - двойной ядерной системы. За счет кинетической энергии сталкивающиеся ядра проникают друг в друга, возрастает зона перекрытия их поверхностей. Из-за большой вязкости ядерной материи и соответственно из-за большого ядерного трения подавляющая часть кинетической энергии переходит в возбуждение системы, скорость относительного движения падает до нуля. Часть кинетической энергии переходит в энергию вращения ядер. Однако несмотря на интенсивное взаимодействие, оболочечная структура обеспечивает ядрам сохранение их индивидуальности. В зоне обмена нуклоны переходят из одного ядра в другое, однако нуклоны внутренних оболочек образуют довольно устойчивые коры, сохраняющие индивидуальность ядер. Эволюция системы происходит в направлении минимума потенциальной энергии системы, в процессе которой нуклоны от одного ядра оболочка за оболочкой передаются другому. Если кулоновские и центробежные силы превосходят силы притяжения, система будет распадаться. Однако, если результирующая сила невелика, распад будет происходить медленно и от ядра к ядру может быть передано значительное количество нуклонов. Более глубокое понимание механизма взаимодействия двух сложных ядер помогает в поиске оптимальных способов синтеза экзотических и сверхтяжелых ядер.

Деление ядер Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнер и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка.

92U + n

56Ba + 36Kr + kn,где k > 1.При делении ядра урана тепловой нейтрон с энергией ~0.1 эВ освобождает энергию ~200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана – цепная реакция деления. Таким образом, один нейтрон может дать нааачало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях:
  • управляемая ядерная реакция деления – создание атомных реакторов;
  • неуправляемая ядерная реакция деления – создание ядерного оружия.
В 1942 году под руководством Э. Ферми в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 году под руководством И. Курчатова. В 1954 году в Обнинске начала работать первая в мире атомная электростанция. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Синтез легких ядер Зависимость удельной энергии связи ядер от массового числа показывает, что слияние двух легких ядер также приводит к освобождению энергии. Основные реакции, которые могут быть использованы для получения энергии

d + d

3He + n + 3.2 МэВ

d + d

t + p + 4.0 МэВ

d + t

4He + n + 17.6 МэВдля поддержания реакции синтеза необходима температура порядка десятков миллионов градусов. Проблемы создания проомышленной установки для получения энергии за счет реакций синтеза пока еще не решены.