Активні елементи на основі тонких плівок РbТе функціонують у зонах активної радіації [11]. У зв'язку із цим певний інтерес мають дослідження впливу іонізуючого випромінювання на властивості їх активних віток[19]. В роботах [20-23] наведені результати вивчення процесів іонної імплантації, опромінення електронами і протонами кристалів і тонких плівок
. Вплив -частинок на електричні властивості тонких плівок халькогенідів плюмбуму досліджено авторами [24-25]. Сумісна дія гамма-квантів і кисню вивчалася в роботах [26, 27].Тут подано вплив гамма-випромінювання на термоелектричні параметри плівок РbТе [19].
Тонкі плівки РbТе вирощували з парової фази методом гарячої стінки [4]. Осадження пари проводили на аморфну поліамідну стрічку ПМ-1. Швидкість осадження плівок складала 3-9 нм с1, а їх товщина 1-5 мкм. Технологічні умови вирощування - температура випаровування Т
, температура стінок Тс та температура підкладок Тп знаходилися в інтервалі: Тв=770 К, Тc=800 К, ТП=420-590 К. Плівки піддавалися опроміненню у вакуумі і на повітрі гамма-квантами із енергією 1,25МеВ від джерела Со60 інтенсивністю в каналі 103 Р с-1. Дози опромінення доводилися до 2-108 P.Плівки РbТе, вирощені на поліаміді, характеризуються дрібнодисперсною полікристалічною структурою 0,4-0,7 мкм. У деяких зразках виявлено текстуру <100> відносно нормалі до поверхні підкладки. Термоелектричні параметри вихідних плівок електронного типу складали: концентрація носіїв - (5-25) 10
см рухливість; -(2,2-2,8) 103 см2 В-1с-1; коефіцієнт термо-е.р.с. - (250-300) mkB-K-1; питома електропровідність - (400-430) Ом см ; термоелектрична потужність - (4,5-4,9) Вт К-2 см-1 термоелектрична добротність -(1,1-1,5) 10-3 К-1.Результати досліджень дозових залежностей термоелектричних параметрів тонких плівок РbТе наведені на рис. 3.11, 3.12 і таб.3.2
Таблиця3.2
Слід звернути увагу на суттєву відмінність у зміні питомої електропровідності
і коефіцієнта термо-е.р.с. а плівок при опроміненні у вакуумі (рис. 3.11) і в атмосфері кисню (рис. 3.12). Так, якщо опромінення плівок гамма - квантами у вакуумі приводить до зростання і зменшення (рис. 3.11), то радіаційна обробка плівок на повітрі веде до протилежних змін - зменшення а і зростання а (рис. 3.12). При цьому, якщо термоелектрична потужність і добротність у першому випадку дещо зменшується, то опромінення і відпал на повітрі приводять до їх зростання (табл. 3.2).Рис. 3.11. Залежність відносних значень питомої електропровідності (
-1), коефіцієнта термо-е.р.с. ( / -2) тонких плівок n-РbТе від дози опромінення гамма - квантами у вакуумі [19].Дозова залежність електричних параметрів плівок, опромінених у вакуумі можна пояснити генераційно-рекомбінаційним механізмом утворення дефектів у вигляді пар Френкеля [
[24]. У випадку нескомпенсованих зразків я-типу, що маємо на досліді, зміна концентрації електронів через зміну концентрації дефектів, із врахуванням їх зарядового стану, буде визначатися співвідношенням:n=2[
(3.4)Із цього виразу стає очевидно, що результуючою дією радіаційних дефектів збільшення концентрації електронів за рахунок переважання позитивно заряджених вакансій телуру V
та міжвузлових атомів Плюмбуму Pb , які є донорами. Останнє і веде до зростання питомої електропровідності, що і спостерігається на експерименті (рис.3.11).Рис. 3.12. Залежність відносних значень питомої електропровідності (
-1), коефіцієнта термо-е.р.с. ( / -2) тонких плівок n-РbТе від дози опромінення гамма - квантами на повітрі [19].При опроміненні плівок гамма - квантами на повітрі поряд із утворенням радіаційних дефектів має місце ріст потенціальних бар'єрів на границях зерен за рахунок радіаційно-стимульованої і термічної дифузії кисню [6,17, 28]. Відомо, що адсорбований на поверхні плівок кисень дифундує в їх об'єм по границях зерен навіть при звичайній витримці на повітрі. Так як у процесі гамма-опромінення плівки нагріваються до 340-350 К [26, 27], то інтенсивність дифузії зростає. Прискоренню дифузії вже прониклого у приповерхневий шар границь зерен кисню сприяють радіаційно - стимульовані процеси. Локалізація кисню на границях зерен обумовлює як акцепторну дію, що веде до зменшення концентрації основних носіїв, так і утворенню енергетичних потенціальних бар'єрів, які зменшують рухливість носіїв заряду. Іншою причиною зменшення концентрації електронів може бути радіаційно-стимульована дифузія надлишкового Плюмбуму з об'єму кристалів на поверхню плівок, або границі зерен [17]. Всі ці ефекти і приводять до зменшення питомої електропровідності плівок при
- опроміненні на повітрі (рис.3.12).Рис. 3.13. Залежність відносних значень питомої електропровідності (
-1), коефіцієнта термо-е.р.с. ( / -2) тонких плівок п-РbТе від часу ізотермічного відпалу на повітрі [19].Підтвердженням реальності цих процесів є аналогічна зміна електричних параметрів плівок при термовідпалі їх на повітрі (рис37.13). Зауважимо, що час відпалу є відображенням дози опромінення (відношення інтегральної дози до інтенсивності випромінювання визначає час опромінення зразків). Порівняння даних рис.3.12 і 3.13 вказує, що характер зміни електричних параметрів плівок у двох процесах дуже подібний. Але при гамма-опроміненні за один і той самий проміжок часу їх зміна більша як при самому термічному відпалі. Це підтверджує гіпотезу про радіаційно-стимульовані процеси за участю кисню.
Тепер про зміну інших термоелектричних параметрів плівок. Зменшення коефіцієнта термо-е.р.с. при опроміненні у вакуумі пов'язане, в основному, з його концентраційною залежністю (концентрація електронів зростає). Зростання ж
при опроміненні і термічному відпалі плівок на повітрі можна пояснити тим, що кисень діє як домішка, зв'язуючи на поверхні вільні та валентні електрони з об'єму зразка. При цьому всі енергетичні рівні напівпровідника викривляються таким чином, що рівень Фермі наближається до валентної зони і біля вільної поверхні утворюється область просторового заряду, збіднена електронами [28]. Крім того, внаслідок сильно розвинутої в плівках мозаїчної структури на границях зерен утворюються потенціальні бар'єри, які також змінюють енергетику поверхні, селективно впливаючи на носії заряду.Висновки
1. Зроблено літературний огляд наукових робіт, статей, монографій, присвячених проблемі дослідження термоелектричних властивостей і точкових дефектів в легованих кристалах плюмбум телуриду.
2. Виконано класифікацію напівпровідників.
3. Описано технологію отримання напівпровідників методами:
1) метод Бріджмена - Стокбаргера;
2) метод повільного охолоджування розплаву;
3) зонне вирівнювання;
4) метод Чохральського;
5) вирощення кристалів з газової фази.
4. Проведено аналіз термоелектричних властивостей, методів вплив ізохорного відпалу вирощування монокристалів і у вакуумі та атмосфері кисню на термоелектричні властивості плівок плюмбум телуриду.
Список використаної літератури
1. Равич Ю. М.,Ефимова Б. А., Смирнов Н. А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe,PbSe,PbS.-М.:Наука.-1968.-384 с.
2. Абрикосов Н.Х.,Шелимова Л.Е.Полупроводниковые материалы на основе соединений АВ.-М.:Наука,1975.-194.
3. Девяткова Е.Д.,Маслаковец Ю.П, Стильбанс Л.С.//Док.АН СССР.-1953.-Т.85.-Вып.3-С54-62.
4. Фреик Д.М.// Неорган. Материали.-1982.-Т.18.-№ 8.-С.1237-1247.