Смекни!
smekni.com

Оптическая физика (стр. 4 из 7)

При освещении дифракционной решетки пучком параллельных и когерентных лучей в результате дифракции произойдет отклонение световых волн в различных направлениях. Если в фокальной плоскости линзы, на которую происходит падение дифрагировавших световых волн, поместить экран, то в определенных участках экрана получатся дифракционные максимумы и минимумы. Если решетку осветить белым светом, то после дифракции на решетке белый свет разложится на составляющие, т.е. каждая световая волна отклонится на определенный угол, который зависит от ее длины. И на экране в местах максимумов будут наблюдаться изображения щелей, окрашенные в различные цвета. В данном случае вся картина на экране носит название дифракционного спектра.

В направлениях, определяемых условием

dsinΘ =ml (m = 0, ± 1, ± 2, ...), (2)


получаются максимумы, интенсивность которых в N2 превосходит интенсивность волны от одной щели в том же направлении. Они называются главными максимумами. Целое число m называется порядком главного максимума или порядком спектра (рис.2). Условие (2) определяет направления, в которых излучения от всех щелей решетки приходят в точку наблюдения в одинаковых фазах, а потому усиливают друг друга Однако, в таких направлениях при отдельных значениях m могут и не возникнуть максимумы. Это будет, когда I1=0, т.е. в направлениях на дифракционные минимумы от одной щели. Например, если a=b, то все главные максимумы четных порядков не появятся, поскольку условие появление главного максимума порядка 2n имеет вид dsinΘ=2nl. При d=2b оно переходит в bsinΘ=nl, т.е. в условие дифракционного минимума на щели. Т.о. в рассматриваемом направлении, ни одна щель, а потому и решетка в целом не пропускают свет. Минимумы дифракционной картины, получающиеся при обращении I1 в нуль называются главными минимумами.

Кроме того выражения (1) обращается в нуль, если sin(Nd/2)=0, но sin(d)¹0, т.е. при Nd=(Nm+p)p, или

dsinΘ=(m+p/N)l(p=1, 2, ..., N-1). (3)

В соответствующих направлениях получаются дифракционные минимумы, в которых интенсивность света равна нулю. Они называются побочными минимумами. Между двумя соседними побочными минимумами получается максимум. Такие максимумы называются добавочными. Между двумя соседними главными максимумами располагается (N-1) минимумов и (N-2) добавочных максимумов.

Интенсивности главного максимума и ближайших к нему второстепенных максимумов находятся в следующих отношениях


1:4/(9p2):4/(25p2):4/(49p2):.. =1:0.045:0.016:0.0083:...

Добавочные максимумы слабы по сравнению с главными. При большом числе щелей они обычно не играют роли. Второстепенные максимумы создают более или менее равномерный слабый фон, на нем выступают узкие и резкие главные максимумы, в которых концентрируется практически весь дифрагировавший свет.

Из условия (2) следует, что при m=0, sinΘ =0. На экране получается дифракционный максимум, называемый нулевым. При m=±1 по обе стороны от нулевого возникают два дифракционных максимума первого порядка. При освещении дифракционной решетки белым светом каждый максимум будет представлять собой спектр, отделенный от других темными промежутками.

Число дифракционных спектров ограничено и определяется условием

sinΘ =ml/d£1. (4)

Из (4) следует, что чем больше постоянная решетки, тем большее число максимумов можно наблюдать, однако максимумы становятся в данном случае менее яркими.

Описание экспериментальной установки

В работе используется распространенная в лабораторной практике решетка, представляющая собой стеклянную пластинку, на которой с помощью делительной машины специальным алмазным резцом нанесен ряд параллельных штрихов.

Для измерения угла отклонения

применяется гониометр, схема которого представлена на рисунке 3.

Гониометр состоит из зрительной трубы Т, коллиматора К, столика С, лимба Е, нониуса Н. Коллиматор служит для создания параллельного пучка света. Он состоит из наружного тубуса с объективом Об и внутреннего тубуса с входной щелью Щ устанавливаемой в фокальной плоскости объектива. Из коллиматора выходит плоская световая волна (параллельный пучок света) и падает на дифракционную решетку. Пучки света собираются объективом зрительной трубы и образуют в фокальной плоскости действительное изображение щели коллиматора. В поле зрения окуляра одновременно видны крест нитей и действительное изображение щели (дифракционный максимум). Перемещая зрительную трубу, можно совместить крест нитей с любым из дифракционных максимумов. Источником исследуемого излучения является неоновая лампа.

Выполнение работы

При работе с дифракционной решеткой основной задачей является точное измерение углов, на которых наблюдаются максимумы для разных длин волн.

Приступая к выполнению работы, необходимо произвести юстировку гониометра. Для этого нужно:

1. Произвести установку зрительной трубы на бесконечность, т. е. на отчетливое видение удаленных предметов;

2. Источник света (неоновую лампу) расположить против щели коллиматора;

3. Установить зрительную трубу так, чтобы ее оптическая ось была продолжением оси коллиматора. Эта будет достигнуто тогда, когда вертикальная линия окуляра трубы будет находиться посередине изображения щели;

4. Поместить решетку на столике таким образом, чтобы нить окуляра была посередине центральной наиболее яркой полосы (спектра нулевого порядка). Чтобы получить хорошие спектры решетка должна быть установлена перпендикулярно пучку лучей так, чтобы ее штрихи шли параллельно щели коллиматора.

Дифракционная решетка с известным периодом может быть использована для измерения длин волн. При выполнении работы решетка остается неподвижной, а зрительная труба поворачивается так, чтобы изображение исследуемой спектральной линии совпало с нитью окуляра.

Длину волны определяют из формулы решетки

. Здесь d=0,01мм; m- порядок спектра или номер максимума. Это уравнение является основной расчетной формулой для вычисления длин световых волн при помощи дифракционных решеток.

Измерение длины волны сводится к определению угла

отклонения лучей от первоначального направления. Далее работа выполняется в следующем порядке.

1. Произвести отсчет положения нулевой линии n0. Для этого нить окуляра нужно совместить с серединой спектра нулевого порядка (центральной яркой полосой) и, с помощью кругового лимба и нониуса, определить значение n0.

2. Аналогично произвести отсчеты для красной, желтой и зеленой линий спектров 1 и 2 порядков, каждый раз совмещая нить окуляра с соответствующей линией. Измерения проводить в порядке, показанном на рисунке 4.

3. Результаты измерений занести в таблицу 1.

4. Если все отсчеты справа обозначить через

, а слева –
, то угол
для одной и той же линии может быть подсчитан тремя способами (формулы приведены ниже):

.

Для зеленой линии, например I порядка, n1 =n1, а n’1=n2 , для желтой линии I порядка n1=n3, n’1=n4 и т.д. (см. таблицу 1).

5. Зная угол, определить длину волны

для каждой линии спектра.

6. Подсчитать относительные погрешности измерений

,%

Таблица 1.

Линия

спектра

порядок

спектра

номер линии

по рисунку

отсчет по лимбу справа отсчет по лимбу слева
,нм
,%
0 0 n0
зеленая I

1

2

n1 n2
желтая I

1

2

n3 n4
красная I

1

2

n5 n6
зеленая II

1

2

n7 n8
желтая II

1

2

n9 n10
красная II

1

2

n11 n12

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какие волны называются когерентными?

2. В чем заключается явление дифракции?

3. Сформулируйте принцип Гюйгенса-Френеля.

4. Какого типа дифракция наблюдается в работе?

5. Какого цвета линия в спектре 1-го и более высоких порядков будет ближайшей к центральному максимуму?

6. Чем будут отличаться дифракционные картины, полученные от решеток с различными постоянными, но с одинаковым числом штрихов?