Смекни!
smekni.com

Оценка вклада 137Cs и 40К в суммарную бета-активность 90Sr в пробах почвы отобранной на Семипалатинском (стр. 7 из 10)

6 Гидрооксиды из горячего раствора фильтруют через бумажный фильтр (белая лента). Осадок на фильтре и коническую колбу промывают по 2-3 раза горячей дистиллированной водой без СО2 с добавлением 2-3 капель аммиака. Фильтр с осадком отбрасывают.

7 К полученному фильтрату прибавляют 15-20 г соли углекислого аммония и нагревают до тех пор, пока раствор над осадком карбонатов не станет прозрачным, затем прибавляют 3 - 5 см насыщенного раствора углекислого аммония для проверки полноты осаждения. Если не наблюдается помутнения раствора, то осаждение карбонатов проведено полностью.

8 Осветленную часть раствора декантируют, а оставшийся раствор с осадком карбонатов фильтруют через бумажный фильтр с белой лентой. Колбу и фильтр промывают 2-3 раза дистиллированной водой.

9 Осадок карбонатов на фильтре растворяют минимальным объемом 6М НС1. Оставшийся осадок на стенках колбы также растворяют 6М НС1 и объединяют с основным раствором. Колбу и фильтр промывают по 2-3 раза горячей подкисленной водой. Общий объем раствора должен быть 50-60 см3. При анализе проб, загрязненных "свежими" продуктами деления (см. Примечание 1).

10 В этот раствор вносят 1 см3 FeCl3 (10 мг в пересчете на Fe) и кипятят 10-15 мин для удаления СО2, добавляют небольшими порциями аммиак без СО2 до образования гидроокисей железа и иттрия, контролируя реакцию раствора с помощью индикаторной бумаги (рН-8).

11 Осадок гидроокисидов фильтруют через бумажный фильтр с белой лентой, промывают 2-3 раза аммиачной горячей водой без СО2. Время осаждения гидрооксидов фиксируют. Осадок отбрасывают. Эту очистку на гидрооксид железа проводят непосредственно перед приготовлением счетного образца.

12 К фильтрату добавляют равное объему пробы количество насыщенного раствора углекислого аммония, или соли (NH4)2СО3 10-18 г в течение 0,5-1 часа. Пробу охлаждают, основную часть раствора декантируют, осадок карбонатов отделяют центрифугированием, промывают 2-3 раза по 7-10 мл дистиллированной водой и 5-7 мл этилового спирта.

13 К осадку добавляют 0,5 мл этилового спирта и переносят на предварительно взвешенную подложку (d=2 см), сушат под зеркальной лампой до постоянного веса.

14 Осадок с подложкой взвешивают, отбирают 10% от полученной массы для определения химического выхода стронция, а оставшуюся часть осадка на подложке заклеивают калькой и измеряют на сцинтилляционном спектрометре.

15 Осадок карбоната, отобранный для определения химического выхода стронция, растворяют в минимальном объеме 6М соляной кислоты, переносят количественно в мерную колбу на 100 мл, разбавляют дистиллированной водой до метки и перемешивают. Затем отбирают 5 см3 в 50 см3 и доводят дистиллированной водой до метки. В разбавленном растворе определяют содержание стронция атомно-абсорбционным методом на приборе ААS-IN. Стронций определяют по атомно-резонансной полосе поглощения с длиной волны 460 нм и рассчитывают его выход. Химический выход стронция можно определить на пламенном фотометре с помощью литиевого светофильтра, пропускающего свет с длиной волны 670,8 нм (ПАЖ-1 или ПАЖ-2). Приборы для определения концентрации стронция предварительно градуируют по серии эталонных растворов, а затем проводят фотометрирование исследуемых растворов.

Расчет содержания стронция-90 проводят по формуле

,(5)

где Аст*- величина активности строция-90;

Р- общий вес пробы, г;

РН- вес навески для анализа, г;

а- выход носителя стронция в долях единицы;

S- площадь отобранной пробы, м2;

106- величина пересчета м2 в км2.

2.2 Радиометрический метод анализа (прямой анализ)

2.2.1 Общие сведения о бета-спектрометрическом комплексе "ПРОГРЕСС"

Прогресс-2000 – это комплекс программных средств, предназначенных для решения широкого спектра задач радиационного контроля от измерений в области сертификации соответствия пищевой продукции, питьевой воды, строительных материалов, продукции лесного хозяйства и других до мониторинга и задач радиационного контроля на предприятиях ядерного цикла. Также для решения целого ряда исследовательских задач, связанных с измерениями радиоактивности.

Прогресс-2000 - это программа-конструктор, позволяющая реализовать как алгоритмы, которые уже на протяжении нескольких лет успешно используются в составе предыдущих версий программы, так и вновь разрабатываемые с учётом специфики задач пользователя. Программные объекты Прогресса-2000 интегрированы в операционную систему Windows, что позволяет легко использовать их в других программах, объединять со стандартными текстовыми процессорами и системами управления баз данных. Впервые реализована возможность сетевой работы - различные части программы могут работать на различных компьютерах.

Программа разработана Российским ЗАО НПП "Доза". Спектроскопический комплекс "Прогресс" внесен в Государственный реестр средств измерений Р.Ф. 22.06.01, сертификат RU.C.38.002.A №10317. В программе учтены опыт и пожелания сотен пользователей, сотрудников лабораторий радиационного контроля различных ведомств России, Белоруссии, Казахстана, Молдавии, Армении, Узбекистана Азербайджана и Украины.

Спектрометр может использоваться как в лабораторных так и в полевых условиях как установка специального назначения и является средством для измерения активности в пробах пищевых продуктов, стройматериалов и других объектов окружающей среды и биологических пробах по их внешнему бета- и гама-излучению.

Метод измерений. Методика измерений основана на регистрации спектров бета-излучения, испускаемого веществом исследуемого объекта, с последующей их обработкой на ПК или микропроцессорном блоке.

Для проведения измерений активности радионуклидов в исследуемых объектах по данной методике используется сцинтилляционный бета-спектрометр на базе персонального компьютера (ПК) с программным обеспечением ПРОГРЕСС.

Управление работой бета-спектрометра, обработка аппаратурных бета-спектров, расчет значений активности и погрешности производится с использованием программного пакета ПРОГРЕСС на ПК, либо микропроцессором по специальным алгоритмам, записанным в постоянном запоминающем устройстве (ПЗУ).

а) проба 1113

б) проба 3549

Рисунок 7 –Фрагмент программы «ПРОГРЕСС». Измерение 90Sr

2.3 Оценка вклада 40К и 137Cs в фоновую активность 90Sr путем сравнения методик

Прежде чем проводить измерения, необходимо было узнать, какие радионуклиды могут излучать бета-частицы. Из литературных данных нашли наиболее подходящие, которые отображены в таблице 3.


Таблица 3 – Виды радионуклидов (40К и 137Cs гамма-излучатели, 90Sr бета-излучатель)

Элемент Энергия излучения Квантовый выход, % Элемент Энергия излучения Квантовый выход, %
K 1311,6 89,2 Sr 546 100
561 196
2284 100
939
Cs 513,97 94,4 Sr 546 100
174 196
1175,63 5,6 2284 100
415 939

Были отобраны пробы с разных площадок, в которых активность 90Sr не превышала 2000Бк/кг. По исследуемым пробам был проведен спектрометрический и по 1 пробе радиохимический анализ.

Таблица 4 – Удельная активность радионуклидов 137Cs, 40К и 90Sr в исследуемых пробах почвы

Номер пробы Место отбора пробы Удельная активность гамма-излучающих радионуклидов (Бк/кг) Удельная активность 90Sr (Бк/кг)
40К 137Cs Определение радиохимическим методом Определение бета-спектрометрическим методом
1113 штольня 11 718 28 590 967
3267 Атомное озеро 663 101 49 200
3323 Опытное поле 541 100 24 235
3327 Опытное поле 477 74 11,5 131
3345 штольня 104 842 636 191 403
3357 след ЮВ 601 1 290 382
3549 площадка 8 648 1 128 199
3550 площадка 8 747 0,6 60 149
4361 скважина 1301 830 9 40 153
4589 Атомное озеро 1149 14 73 280
4590 Атомное озеро 1127 716 200 504
4593 Атомное озеро 1047 102 210 345

По табличным данным были построены графики, отражающие влияние активности радионуклидов 137Cs и 40К на активность 90Sr.


3 Безопасность и охрана труда

Охрана труда представляет собой систему законодательных актов и соответствующих им социально – экономических, технических, гигиенических и организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда.

В данной дипломной работе, с точки зрения безопасности, имеем дело не только с такими опасными факторами, как электрический ток, источники ионизирующего излучения, а также легковоспламеняющиеся жидкости, едкие и горячие жидкости, работа со стеклянной посудой.

3.1 Электробезопасность

Электробезопасность – это система организационно – технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электрического поля и статического электричества.

Одним из опасных факторов является электрический ток. Электрический ток – это направление заряженных частиц. При похождении электрического тока через тело человека весь организм его может подвергнуться механическому, тепловому, световому, химическому и биологическому воздействию. При биологическом воздействии нарушается деятельность нервной системы, в результате чего может наступить паралич дыхания или фибрилляция сердца.