Смекни!
smekni.com

Изучение некоторых вопросов термодинамики (стр. 3 из 4)


откуда

(6.8)

Это соотношение показывает, что при изохорическом м адиабати­ческом процессах одинаковому изменению давления соответствуют неодинаковые изменения внутренней энергии. Читателям представ­ляем возможность самим выяснить физическую сущность различия этих величин. Мы только отметим, что при изохорическом про­цессе система не совершает работы, а изменение давления может происходить за счёт подводимого к системе или отводимого от системы количества теплоты. При адиабатическом же процессе изменение давления может быть обусловлено либо работой системы, против сил, за счет её внутренней энергии, либо же работой, со­вершенной над системой.

Найдём связь между изменениями объёма системы и её внут­ренней энергией при изобарическом процессе.

(6.9)

где были учтены (6.1), (2.15) и (2.2).

Для идеального газа выражение (6.9) даёт

(6.10)

Сравним это значение с ранее полученным (3.1) и выражением

(6.11)

Для идеального газа, на основании (3.1),

Из (6.10) и (6.11) следует:

откуда

(6.12)

Объяснение причин различия значений этих величин должно быть подобно объяснению различия величин (6.8). Только в полученном выражении изменения объёма системы и её внутренней энергии при адиабатическом процессе имеют противоположные знаки, а при изобарическом – одинаковые.

ВЫВОД НЕКОТОРЫХ ПОЛЕЗНЫХ ТЕРМОДИНАМИЧЕСКИХ СООТНОШЕНИЙ.

1. Найдём разность теплоёмкостей СР и СV.


откуда


(7.1)

Отметим, что поскольку соответствующие частные производные в выражении (7.1) имеют положительные знаки, то при температурах выше абсолютного нуля СР>CV, а при температурах, близких к абсолютному нулю

поэтому СР = СV , и так как при тех же температурах

то СР V=0.

2. Найдём связь между изменениями давления и энтропии при постоянном значении внутренней энергии системы

(7.2)

где использованы соотношения (2.7), (2.12), (2.17) и значения соответствующих частных производных от внутренней энергии. Нетрудно заметить, что для газов, при постоянном значении внут­ренней энергии, увеличение давления сопровождается уменьшением энтропии. Это и понятно, так как энтропия связана с вероятностью, а при увеличении давления уменьшается вероятность состояния системы.

3. Найдём связь между изменениями отдельных параметров сис­темы при постоянном значении внутренней энергии.

(7.3)

В случае идеального газа имеем:


(7.4)

Этого и следовало ожидать, поскольку внутренняя энергия идеаль­ного газа зависит от температуры. Поэтому условию U=const соответствует T=const. Для реальных газов условие (7.4) не вы­полняется.

(7.5)
Гч /-• ^ .6

(7.6)

(7.7)

Нетрудно убедиться, что для идеального газа

(7.8)

Найдём связь между изменениями отдельных параметров системы и её теплосодержанием.

(7.9)

(7.10)

(7.11)

(7.12)

Однако это значение частной производной можно определить и бо­лее простым способом, если учесть, что I=U+pV и dI=dU+d(pV). Тогда

Важно подчеркнуть, что одно и то же значение частной про­изводной, при постоянном значении выбранного параметра, можно получить несколькими способами в зависимости от выбора промежу­точных переменных. Учитывая это, при решении задач, можно ввес­ти такие якобианы, тождественно равные единице, которые относи­тельно быстро приведут к цели. Покажем это на одном примере.

a)

(7.13)

где были использованы (3.1) и (2.2).

b)

(7.14)

Аналогичное значение, но с помощью введения переменных S и p было получено ранее в выражении (6.9).

Приведённый пример показывает, что для проверки правильности нахождения одной и той же термодинамической величины мож­но использовать несколько вариантов, хотя и в данном примере использованы не все.

СПОСОБЫ ОПРЕДЕЛЕНИЯ CP ДЛЯ ИДЕАЛЬНОГО ГАЗА.

Из объединённого выражения обоих начал термодинамики сле­дует, что если подвод теплоты к системе осуществляется при изо­барическом процессе, то TdS=CPdT, или

Однако, теплоемкость Cp для идеального газа можно определить как частную производную от тепловой функции по температуре. Действительно, при изобарическом процессе

(8.1)

Это соотношение нетрудно понять, поскольку при р=const

dI=TdS+Vdp=TdS=CpdT.

Найдём связь между изменениями температуры и тепловой функции при изохорическом процессе.

(8.2)

где учтено выражение (7.11).

В случае адиабатического процесса изменения тех же вели­чин дают:

(8.3)

где использованы соотношения (2.2), (2.8), (7.10) и (8.2).

Непосредственной проверкой нетрудно убедиться, что для идеального газа

(8.4)

Читателям представляется возможность найти удовлетвори­тельное, с точки зрения законов термодинамики, объяснение выражений (8.4).

По аналогии с вышеприведенными примерами, можно решить большое количество задач, связанных со свободной энергией, энтальпией и термодинамическим потенциалом Гиббса.

Вышеприведенные примеры убедительно доказывают преимуще­ство такого подхода к решению задач термодинамики. Этим спосо­бом, в основном, решаются и задачи, связанные с термодинамикой стержней, диэлектриков и магнетиков, примеры которых приведены в [4] и [7], для которых можно учесть электро- и магнитострикционные явления, пьезоэлектрический и пьезомагнитный эффекты, а также и задачи, связанные с химическим потенциалом, когда количество вещества в системе изменяется .

Применение якобианов, особенно после изучения свойств термодинамических функций и их дифференциалов, позволяет более доступным способом решить ту или иную задачу, и, что очень важ­но, даёт возможность, даже при решении одной задачи, охватывать большой материал, предусмотренный программой. Преимущество та­кого подхода к рассмотрению отдельных, или группы, вопросов, как показали наши наблюдения, не вызывает сомнений как с точки зрения корректности математических выражений, так и логичности и взаимосвязи явлений термодинамики.

СОСТАВЛЕНИЕ ДЕТЕРМИНАНТОВ ЯКОБИ И ТАБЛИЦЫ ТЕРМОДИНАМИЧЕСКИХ КОЭФФИЦИЕНТОВ ДЛЯ СИСТЕМ, ОПИСЫВАЕМЫХ БОЛЬШИМ ЧИСЛОМ ПЕРЕМЕННЫХ.

В качестве примера рассмотрим систему, описываемую тремя независимыми переменными, например, систему с переменным коли­чеством вещества. В этом случае дифференциалы термодинамических функций имеют вид:

dU=TdS-pdV+mdN, (9.1)

dF=-SdT-pdV+mdN, (9.2)

dI=TdS+Vdp+mdN, (9.3)

dФ=-SdT+Vdp+mdN (9.4)

где dN – изменение числа молей вещества , а m – химический потенциал, имеющий размерность энергии в расчете на количество молей.

Из выражения (9.1) получим следующие соотношения:

(9.5)

(9.6)

(9.7)

Формула (9.5) даёт:


откуда


(9.8)

Из (9.6) и (9.7), аналогичным способом, получаем:

(9.9)

(9.10)

При рассмотрении дифференциалов свободной энергии (9.2) и энтальпии (9.3) получим, соответственно, следующие, новые, соотношения: