Смекни!
smekni.com

Изучение некоторых вопросов термодинамики (стр. 4 из 4)


(9.11)

(9.12)

Уместно отметить, что рассмотрение дифференциала термодинамического потенциала Гиббса (9.4) не приводит к установлению но­вого соотношения. Раскрывая якобианы (9.8) – (9.12) получим:


(9.13)

(9.14)

(9.15)

(9.16)

(9.17)

Все коэффициенты выражения (9.13) нами уже определены. Из фор­мул (9.14)–(9.17) составим таблицу термодинамических коэффициен­тов так, чтобы первая строка не содержала S и р , вторая- S и V , третья- V и Т, четвертая- Т и р.

Устанавливая соответствующую связь между коэффициентами данной таблицы, мы окажемся в состоянии решить все задачи, свя­занные с однокомпонентной системой, с переменным количеством вещества.

Аналогичным образом составляется таблица коэффициентов для систем, описываемых четырьмя и большим числом независимых переменных, например, для двух- или трёхкомпонентной термодина­мической системы.

Если процессы, протекающие в многокомпонентной системе таковы, что

dp=dV=dT=dS=0 (9.19)

(9.20)

и

(9.20)

то будем иметь дело с системой, для которой

dU=dF=dI=dФ=0 (9.21)

При выполнении условия (9.19) можно рассматривать только один термодинамический потенциал, при этом неважно выполняется усло­вие (9.20) или нет.

Полезно заметить, что в реальных условиях возможны сос­тояния, при которых условия (9.19)–(9.21) не соблюдаются и тем не менее при неизменных р и Т или V и V мы в течение длительного времени не наблюдаем изменения равновесия системы. Такое равновесие называется ложным (об этом более подробно см. в [8]). При условии

(9.22)

возможен самопроизвольный процесс в прямом направлении в любой гомогенной или гетерогенной системе (например, переход отдель­ных компонент из одной фазы в другую, возможность протекания химических реакций между различными компонентами и т. д.).

Отметим, что переход данного компонента может происходить самопроизвольно только из фазы, для которой его химический по­тенциал больше, в фазу, для которой он меньше. Такой переход сопровождается уменьшением химического потенциала компонента в первой фазе и увеличением его во второй. В результате этого разность между химическими потенциалами данного компонента в этих двух фазах уменьшается и когда значения химического потен­циала компонент в обеих фазах выравниваются, достигается сос­тояние равновесия.

ЛИТЕРАТУРА

1. В.Г.Левич, Курс теоретической физики, t.1, стр. 446, "Наука", 1969.

2. В.И.Смирнов, Курс высшей математики, т.3, ч.2, "Наука", 1974.

3. Д. Тер Хаар, Г.Вергеланд, Элементарная термодинамика, "Мир", 1968.

4. Ю.Б.Румер, М.Ш.Рыбкин, Термодинамика, статистическая физика и кинетика, "Наука",1977.

5. В.И.Тюлин, Введение в теорию излучения и распространения звука, стр.17, "Наука", 1976.

6. Ч.Киттель, Статистическая термодинамика, стр.147, "Наука",1977.

7. Р.Кубо, Термодинамика, "Мир" , 1970.

8. Л.В.Радушкевич, Курс термодинамики, стр.192, "Просвещение", 1971.

СОДЕРЖАНИЕ

Краткое введение ................………………..………………………………………….. 3

Термодинамические коэффициенты и установление связи между ними…………. 6

Вывод уравнения адиабатического процесса для идеального и реального газов .... 11

Вывод уравнения для вычисления скорости распространения звука в среде………. 13

Способы определения СV для идеального газа ………………………………………... 15

Об изменениях внутренней энергии при других изопроцессах……………………… 17

Вывод некоторых полезных термодинамических соотношений……………………. 21

Способы определения СР для идеального газа………………………………………… 26

Составление детерминантов Якоби и таблицы термодинами­ческих коэффициентов для систем, описываемых большим числом переменных………………………………….. 28

Литература………………………………………………………………………………… 33