ГЗОГЯН В. М.
Пособие для студентов физических специальностей
Применяется метод решения задач, основанный на использовании якобианов, который позволяет легко перейти от недоступных измерению величин к доступным.
Приведены примеры решения подобных задач, для которых получены общие дифференциальные соотношения, позволяющие анализировать полученные выражения для идеальных и реальных систем. Показано, что одно и то же значение частной производной, при постоянном значении выбранного параметра, можно получить несколькими способами, в зависимости от выбора промежуточных переменных. Это даёт возможность, с одной стороны, проверить правильность полученных соотношений, а с другой, ввести в рассмотрение такие новые якобианы, тождественно равные единице, которые относительно быстро приводят к решению задачи.
Пособие может быть рекомендовано студентам физических специальностей высших учебных заведений, желающих углубить свои знания в данной области, и использовано ими в учебно-исследовательской работе при составлении и решении новых задач и интерпретации полученных соотношений.
Перестройка программы высших учебных заведений по общей и теоретической физике предполагает усовершенствование методов изучения отдельных вопросов и разделов, а также и методов решения задач. Это усовершенствование должно позволить студентам не только глубже усвоить физическое содержание рассматриваемого вопроса, но и видеть взаимосвязь между изучаемыми явлениями.
При изучении ряда вопросов и решении части задач термодинамики часто приходится производить преобразование термодинамических величин, например, преобразования переменных, поддерживаемых постоянными в ходе процесса, другими. Такие преобразования нужно совершать по общим правилам замены переменных при дифференцировании функций по нескольким переменным. [1].
Один из способов преобразования термодинамических величин приведен в [1]. Однако преобразования величин целесообразно производить методом якобианов, но для этого необходимо ознакомить студентов с якобианами и их свойствами [2].
Якобианом называется определитель
причем такой символ следует рассматривать как единый, а U и υ – как функции Х и У.
Якобиан обладает следующими важными свойствами:
1.
2.
4.
Если система может быть описана тремя независимыми переменными, например, в случае системы с переменным количеством вещества, то целесообразно использовать якобиан вида:
,который раскрывается как определитель третьего порядка. Для систем с четырьмя независимыми переменными, якобиан раскрывается как определитель четвертого порядка и т. д.
Таким образом, в термодинамике, согласно [3], существует такое множество соотношений, что не имеет смысла их запоминать. Лучше запомнить лишь термодинамическое тождество, объединяющее первое и второе начала, определения термодинамических потенциалов и какое-нибудь правило преобразования одного набора переменных в другой, что легко осуществить составлением детерминантов Якоби.
Применение якобианов, с одной стороны, позволяет устанавливать связь между термодинамическими величинами (коэффициентами) наиболее простым способом, а с другой – даёт возможность легко перейти от недоступных измерению величин к доступным.
Согласно [4], термодинамическими коэффициентами называются выражения вида , где символами l, m, n обозначены р, V, Т, S. Эти коэффициенты характеризуют определённые свойства системы.
Составим таблицу термодинамических коэффициентов так, чтобы первая строка не содержала S, вторая – Р, третья – V и четвертая – Т:Можно показать, что если четыре из них, подчеркнутых в таблице, выбрать в качестве независимых коэффициентов, то остальные восемь могут быть выражены через них. Действительно, нетрудно заметить, что произведение коэффициентов, стоящих в одной строке данной таблицы, равно минус единице. Например, для первой строки
Разделив обе части данного выражения на
, получим (2.2) (2.3) (2.4) (2.5) Ещё четыре соотношения между термодинамическими коэффициентами можно получить из выражений для дифференциалов термодинамических функцийdU = TdS – pdV
dF = – SdT – pdVdI = TdS + Vdp
dФ = – SdT + Vdp
или же путем преобразования основного термодинамического тождества, справедливого для всех функций, с помощью введения новых якобианов, равных единице.
Поскольку термодинамические функции являются функциями состояния, то правые части выражений (2.6) должны удовлетворять требованиям
(2.7)
(2.8)
(2.9)
(2.10)
Основное термодинамическое тождество можно получить из этих выражений. Действительно, из (2.7) имеем
откуда
(2.11)
Из сказанного следует также, что выражения (2.7)—(2.10) могут быть получены из основного тождества (2.11).
После того, как записаны основные уравнения, в принципе, мы могли бы, как это сделано в [4], выбрать в (2.1) три независимых коэффициента и с помощью этих уравнений выразить оставшиеся коэффициенты через выбранные. Однако, при решении некоторых задач, такой подход оказывается менее целесообразным, так как соответствующие выражения оказываются громоздкими. Более того, мы можем принимать во внимание то обстоятельство, что если известно уравнение состояния системы, то можно легко вычислить и третий коэффициент первой строки в (2.1). Поскольку при решении большинства задач уравнение состояния системы известно, то, практически, в (2.1) можно выбрать в качестве независимых пять коэффициентов. Такой подход много упрощает решение задач.