При нормальному падінні на основі виразів (11) і (23) можна записати такі формули для
і : ;(24) .(25)З формул (20) і (22) видно, що якщо
, то і, отже, , а . Відповідний кут падіння називають кутом Брюстера , який обчислюють за формулою: .При вуглі Брюстера відображена хвиля завжди лінійно поляризована в напрямі, перпендикулярному площині падіння, а хвиля, поляризована в площині падіння, не відбивається взагалі. При
(ковзаюче падіння) і , тобто світло відбивається повністю. Приклади залежності , , і від кута падіння при переході з оптично менш щільного в оптично більш щільне середовище ( ).Крім розглянутої енергетичної залежності важливу роль відіграють фазові співвідношення в падаючій, відображеній і заломленій хвилях. З формул Френеля випливає, що при відображенні від оптично більш щільного середовища (
) відображена і падаюча хвилі знаходитимуться у протифазі в діапазоні кутів падіння від до . Цю властивість називають втратою напівхвилі при відображенні від оптично більш щільного середовища. За допомогою формул Френеля можна також показати, що падаюча і заломлена хвилі завжди у фазі.У разі падіння світлових хвиль на межу двох середовищ з оптично більш щільного середовища, починаючи з деякого граничного кута падіння
, хвилі зазнаватимуть повного внутрішнього відображення. Вираз для граничного кута легко отримати із закону заломлення (17), прийнявши : .Якщо світлова хвиля падає на межу двох поглинаючих середовищ, то формули Френеля залишаються справедливими при заміні дійсних показників заломлення
середовищ на комплексні показники заломлення . Амплітуди відображеної і заломленої хвиль, обчислені в цьому випадку за формулами Френеля, також будуть комплексними величинами, що пов'язано з їх еліптичною поляризацією. Отже, якщо на поглинаюче середовище під деяким кутом падає лінійно поляризована хвиля, то як відображена, так і заломлена хвилі будуть еліптично поляризовані.Проілюструємо використання формул Френеля на прикладі нормального падіння світлової хвилі з вакууму на поглинаюче середовище. Підставляючи у формулу (24)
і , отримаємо .