Смекни!
smekni.com

Елементи квантової фізики (стр. 8 из 13)

2.1..3. Механічний і магнітний моменти атома водню.

Орбітальне квантове число l визначає стан електрона в атомі. Якщо рух електрона характеризується значенням квантового числа l=0, то електрон перебуває в s- стані, а сам електрон називається s-електроном. Квантовому числу l=1 відповідає р-стан електрона, l=2 - d-стан, l=3 - f-стан і т. д.

Для електрона, що знаходиться в атомі водню на n-му енергетичному рівні, можливі одна колова орбіта при l=n-1 i n-1 еліптичних орбіт. Із зменшенням l збільшується ступінь витягнутості орбіти. Отже, при заданому головному квантовому числі орбітальне квантове число l визначає форму орбіти.

У квантовій механіці орбітальний момент імпульсу електрона визначається таким співвідношенням:

, де (l=0,1,2,...n-1). (2.1.24)

Цей вираз свідчить про можливість таких рухів електрона, для яких (при l=0) орбітальний момент імпульсу електрона дорівнює нулю.

Третє квантове число ml, яке називається магнітним квантовим числом, визначає просторовий розподіл траєкторії руху електрона, а також і проекцію вектора механічного моменту або моменту імпульсу орбіти на заданий напрям.

Орбіту, по якій рухається електрон, можна розглядати як контур струму. Такий контур характеризується певним значенням орбітального магнітного моменту електрона

, векторною величиною, що направлена вздовж осі орбіти в той бік, куди направлена індукція магнітного поля, створюваного цим контуром. Між вектором
і
існує наступний зв’язок

= -
=-g
, (2.1.25)

де е - заряд електрона; m - маса електрона; g

- гіромагнітне відношення.

Враховуючи значення Ll з (2.1.24) одержимо:

=-g
=-
б
, (2.1.26)

де

б=g
- магнетон Бора.

Як видно з (2.1.26) вектори

і
мають протилежні напрямки.

Вектор

може мати 2l+1 просторових орієнтацій, а це означає, що при даному l електрон в атомі, який вміщено в зовнішнє магнітне поле, може рухатися по 2l+1 орбітах, які відрізняються своєю орієнтацією щодо напрямку магнітного поля.

, (2.1.27)

де ml - магнітне квантове число.

На рис. 2.4. зображено можливі значення проекції орбітального механічного моменту на напрям осі z зовнішнього магнітного поля для випадків l=1 i l=2.


Рис. 2.4.

Таким чином просторове квантування приводить до розчеплення в магнітному полі енергетичного рівня електрона на ряд підрівнів, а отже, і до розчеплення спектральних ліній. Таке явище спостерігав Зеєман. Розчеплення спектральних ліній також можливе в електричному полі - дослід Штарка.


Рис. 2.5


Між розщепленими рівнями можливі переходи електронів згідно правил відбору (рис. 2.5)

Dl=±1 i Dml=0 ; ±1.

2.2 Багатоелектронні атоми.

2.2.1. Досліди Штерна і Герлаха. Спін електрона.

2.2.2. Принцип нерозрізненості тотожних частинок. Принцип

Паулі.

2.2.3. Розподіл електронів за станами. Періодична система

елементів.

2.2.4. Рентгенівські промені. Суцільний спектр і його межі.

Характеристичний спектр. Закон Мозлі.

2.2.1. Досліди Штерна і Герлаха. Cпін електрона

Висновки квантової механіки про просторове квантування потребували експериментального підтвердження . Виявилось, що всі електронні лінії мають так звану «тонку структуру», яка спостерігається навіть при відсутності зовнішнього магнітного поля. Так, всі спектральні лінії водню і лужних металів є дублетами, тобто складаються з двох окремих, близько розташованих ліній. Була висунута гіпотеза про наявність у електронів власного механічного моменту, пов’язаного з обертанням його навколо власної осі. Пізніше власний механічний момент електронів S назвали спіном. Чисельно спін електрона дорівнює 1/2

. Електрону властивий також магнітний момент, що дорівнює магнетону Бора mБ=
g, де g - гіромагнітне відношення, рівне e/2m; Власний механічний і магнітний моменти електрона можуть бути орієнтовані лише двома способами: паралельно або антипаралельно відносно вибраного напрямку. Ці дві орієнтації визначаються четвертим квантовим числом, яке називається спіновим. Спінове квантове число може набувати значень 1/2 і -1/2 . Отже, на ряду з уже введеними раніше трьома квантовими числами n, l, ml є ще четверте квантове число ms - яке квантує власний механічний момент електрона.

Гіпотезу про існування власного механічного моменту (спіну) і власного магнітного моменту було пояснено в дослідах Штерна і Герлаха, виконаних ними ще в 1921-1923р.р.

Для дослідження були використані нейтральні атоми срібла, на зовнішніх оболонках яких рухається по одному електрону. Схема установки дослідів Штерна і Герлаха показана на рис. 2.6.


Рис. 2.6

В установці на рис. 2.6. було створено досить неоднорідне магнітне поле за рахунок особливої конструкції магнітних полюсів постійного магніту.

Потенціальна енергія атомів срібла пов’язана з Рмі В співвідношенням

(2.1.28)

де

- вектор магнітного моменту атому срібла:

- вектор індукції зовнішнього магнітного поля.

Якщо зовнішнє магнітне поле буде постійним, то магнітні моменти атомів срібла, здійснювали б прецесію навколо вектора

, а магнітні сили були б відсутні.

В сильно неоднорідному магнітному полі цього не спостерігається, так як

, тому що

Отже

(2.1.29)

Під дією цієї магнітної сили (2.1.29.) повинно бути розчеплення спектральних рівнів.

Якщо просторового квантування немає, тобто орієнтація магнітних моментів атомів у зовнішньому магнітному полі довільна, то на екрані спостерігатиметься неперервний розподіл атомів. При просторовому квантуванні пучок атомів після проходження неоднорідного поля розчеплюється на кілька пучків. Таке розчеплення атомних пучків спостерігали Штерн і Герлах і тим самим довели справедливість положення про просторове квантування магнітних моментів атомів. Проте виявилося, що в окремих дослідах є розбіжність між результатами експерименту і вимогами теорії.

Так, в експерименті з атомами срібла спостерігалось розчеплення пучка атомів, що проходили неоднорідне магнітне поле на два пучки, тоді як за теорією ці атоми не повинні зазнавати дії магнітного поля, оскільки їх орбітальні магнітні моменти в основному стані дорівнюють нулю.

Аномальне розчеплення атомних пучків водню, літію, срібла на два пучки неоднорідним магнітним полем пов’язане з квантуванням власного магнітного моменту атомів.

(2.1.30)

де ms - спінове квантове число, рівне 1/2 і -1/2.

В дослідах Штерна і Герлаха було встановлено, що власний магнітний момент електронів дорівнює

(2.1.31)

Спінове гіромагнітне відношення в два рази перевищує орбітальне. Наявність власного механічного моменту електрона заборонена теорією відносності. Це говорить про те, що класичної інтерпретації власний механічний момент немає.

З квантової точки зору цю властивість частинок називають спіном, і інтерпретують як невід’ємну властивість елементарних частинок.