Смекни!
smekni.com

Устойчивость (стр. 3 из 3)

0,95F

В нашем случае это условие выполнено.

Принимает размер сечения a = 6см


Лекция 15

Энергетический способ определения критических сил

В сколь-нибуть сложных случаях, получить критическую силу из решения дифференциального уравнения изогнутой оси сжатого стержня затруднительно.

Поэтому в подобной ситуации проще получить приближённое решение, например, энергетическим методом.

Рассмотрим стержень центрально сжатый силой F. Условно на рисунке стержень показан шарнирно опёртым, но вопрос о граничных условиях пока оставим открытым

Рис. 106

Пусть сила F меньше эйлеровой критической силы. Если приложить к стержню некоторую поперечную нагрузку Fп, то стержень изогнётся, но будет находиться в устойчивом равновесном состоянии. Сжимающая сила совершит при этом работу на перемещении ▲, которое можно найти следующим образом.

Укорочение малого элемента длиной dz будет равно

▲=

учтём, что

= y'

Тогда ▲=

Потенциальная энергия деформации изогнутого стержня

U=

Здесь учтено, что M = EIxy”

Изменение полной энергии при малом изгибе будет

Если

, то стержень устойчив, если же

, т.е. F
производит работу большую, чем может на копиться в стержне в виде энергии упругой деформации, избыточная работа идёт на сообщение кинетической энергии, стержень приходит в движение и прогибается дальше. Т.е. он не устойчив. Очевидно, что когда сила достигает критического значения, то Fкр
или

откуда

Для получения значения критической силы необходимо задаться формой изогнутой оси. Функцию y = y(z) надо подбирать таким образом, чтобы она удовлетворяла граничным условиям.

Примеры

1) Вначале попробуем решить рассмотренную ранее задачу о критической силе для шарнирно опёртого по обоим концам стержня. Точное решение известно.

Fkp =

Форма изогнутой оси в этом случае известна

y = CSin

но предположим, что это нам не известно и аппроксимируем изогнутую ось полиномом четвёртой степени

Граничные условия следующие

А) при Z = 0: y=0 (1) ; y”=0 (2) прогиб равен нулю и момент равен нулю,

Б) при Z =

: y = 0 (3) ;y”=0 (4)

Возьмём производные

y’ = 4Az3+3Bz2+2Cz+D;

y” = 12 Az2+6Bz+2C

Из (1) E = 0 ; bp (2) C = 0 Используем (3)

; из (4) следует

12 A

подставляя в (3): A

D=A

y’=A(4z3-6
; y”=12A(z2-

Подставим эти выражения в формулу (1)

Как видим, приближённое решение практически не отличается от точного.

2)Рассмотрим более сложную задачу.

Определить критическую силу для стержня , показанного на рисунке.

Аналогично предыдущему случаю, аппроксимируем изогнутую ось полиномом

y = Az4+Bz3 +Cz2 +Dz+E

Запишем граничные условия

1) при z = 0 y = 0 (1)

y’ = 0 (2)

2) при z =3

: y” = 0 (свободный конец и момент отсутствует) (4)

Найдем производные

y' = 4Az3+3Bz2+2Cz+D

y” = 12Az2+6Bz+2C;

Используем граничные условия

Из (1) E = 0 ; из (2) D = 0

Из (3) A16

4+B8
3+C4
=0

4

2A+2
B+C=0 (3а)

Из (4) 12A*9

2+6B*3
+2C=0

54

2A+9
B+C=0 (4а)

Решим совместно (3а) и (4а)

_9

B+C=-54
2A

2

B+C=-4
2A

------------------------

7

B=-50
2A B=
;

C=-4

2-2
(
)=

Подставим найденные значения коэффициентов полинома в выражения для

y’=2A(2z3-

z2+
)

y” = 12A(z2-

z+
.

Подставим в (1)

Вычисляя интеграл, получаем

Fkp