Смекни!
smekni.com

Нанотехнологии для школьников (стр. 2 из 11)

По определению Дрекслера нанотехнология - "ожидаемая технология производства, ориентированная на дешевое получение устройств и веществ с заранее заданной атомарной структурой". Как считают многие специалисты, в течение следующих 50-ти лет многие устройства станут такими маленькими, что тысяча таких наномашин вполне смогут разместиться на площади, занимаемой точкой в конце этого предложения. Чтобы собирать наномашины, необходимо:

(1) научиться работать с одиночными атомами – брать их и ставить на нужное место.

(2) разработать сборщики (assemblers) – наноустройства, которые могли бы работать с одиночными атомами так, как это объяснено в (1), по программам, написанным человеком, но без его участия. Так как каждая манипуляция с атомом требует определённого времени, а атомов очень много, то по оценкам учёных необходимо изготовить миллиарды или даже триллионы таких наносборщиков, чтобы процесс сборки не занимал много времени.

(3) разработать репликаторы – устройства, которые бы изготовляли наносборщики, т.к. их придётся изготовить очень и очень много.

Пройдут годы, пока появятся наносборщики и репликаторы, но их появление кажется почти неизбежным. При этом каждый шаг на этом пути сделает следующий более реальным. Первые шаги на пути создания наномашин уже сделаны. Это - "генная инженерия" и "биотехнология".

Машины исцеления

Э. Дрекслер предложил использовать наномашины для лечения человека. Человеческое тело сделано из молекул, и люди становятся больными и старыми из-за того, что появляются «ненужные» молекулы, а концентрация «нужных» уменьшается или их структура изменяется. В результате этого люди и страдают. Ничто не мешает человеку изобрести наномашины, способные переупорядочить атомы в «испорченных» молекулах или собирать их заново. Очевидно, что такие наномашины могут сделать революцию в медицине.

В будущем будут созданы наномашины (нанороботы), приспособленные для того, чтобы проникать в живую клетку, анализировать её состояние и в случае необходимости «лечить» её, изменяя структуру молекул, из которых она состоит. Эти наномашины, предназначенные для ремонта клеток, будут сопоставимы по размеру с бактериями и будут двигаться через ткани организма человека так, как это делают лейкоциты (белые клетки крови), и входить внутрь клеток, как это делают вирусы (см. рис.6).

С созданием наномашин для ремонта клеток лечение больного превратится в последовательность следующих операций. Сначала, отрабатывая молекулу за молекулой и структуру за структурой, наномашины будут восстанавливать (лечить) клетку за клеткой какой-либо ткани или органа. Затем, отрабатывая орган за органом по всему телу, они восстановят здоровье человека.

Рисунок 6. Схематическое изображение наноробота на поверхности клетки. Видно, как щупальца наноробота проникли внутрь клетки. Автор: Ю. Свидиненко.

Фотолитография – дорога в наномир: сверху вниз

Учёные и технологи уже давно стремятся в мир маленьких размеров, особенно, те из них, которые разрабатывают новые электронные приборы и устройства. Чтобы электронное устройство было умным и надёжным, оно должно состоять из огромного числа блоков, а значит, содержать тысячи, а иногда и миллионы транзисторов.

При изготовлении транзисторов и интегральных схем применяется оптическая фотолитография. Суть ее в следующем. На окисленную поверхность кремния наносится слой фоторезиста (полимерный светочувствительный материал), и затем на него накладывается фотошаблон - стеклянная пластинка с рисунком элементов интегральной схемы (см. рис. 7).

Рисунок 7. Фотошаблон для интегральной схемы электронных часов.

Пучок света проходит через фотошаблон, и там, где черного цвета нет, свет попадает на фоторезист и засвечивает его (см. рис. 8).

Рисунок 8. Схема изготовления микросхем с использованием фотолитографии (слева направо). Сначала делают фотошаблон, для чего освещают лучом лазера стеклянную пластинку, покрытую слоем хрома и фоторезиста, а потом удаляют освещённые части фоторезиста вместе с хромом. Шаблон помещают в параллельном пучке ультрафиолетового света, который фокусируется линзой и падает на поверхность кремниевой пластинки, покрытой тонким слоем окиси кремния и фоторезиста. Последующие термическая и химическая обработка позволяют создать сложную двумерную картину бороздок, необходимую для сборки электронной схемы.

После этого все те участки фоторезиста, которые не обрабатывались светом, удаляются, а те которые освещались, подвергаются термообработке и химическому травлению. Таким образом, на поверхности окисла кремния образуется рисунок, и пластинка кремния готова, чтобы стать основной частью электронной схемы. Транзистор был изобретен в 1947 году, и тогда его размеры составляли около 1 см. Совершенствование фотолитографических методов позволило довести размер транзистора до 100 нм. Однако основой фотолитографии является геометрическая оптика, а значит, с помощью этого метода невозможно провести две параллельные прямые на расстоянии, меньшем длины волны. Поэтому сейчас при фотолитографическом изготовлении микросхем используют ультрафиолет с малой длиной волны, но дальше уменьшать длину волны становится дорого и сложно, хотя современные технологии уже используют электронные пучки для создания микросхем.

Внедрение в мир наноразмеров, по которому шли изготовители микросхем до сих пор, можно назвать дорогой «сверху вниз». Они используют технологии, хорошо себя зарекомендовавшие в макромире, и лишь пытаются менять масштаб. Но есть и другой путь – «снизу вверх». А что, если заставить сами атомы и молекулы самоорганизовываться в упорядоченные группы и структуры размером в несколько нанометров?Примерами самоорганизации молекул, образующих наноструктуры, являются углеродные нанотрубки, квантовые точки, нанопроволоки и дендримеры, более подробно о которых будет сказано ниже.

ИНСТРУМЕНТЫ НАНОТЕХНОЛОГИЙ

Сканирующий зондовый микроскоп

Первыми устройствами, с помощью которых стало возможным наблюдать за нанообъектами и передвигать их, стали сканирующие зондовые микроскопы - атомно-силовой микроскоп и работающий по аналогичному принципу сканирующий туннельный микроскоп. Атомно-силовая микроскопия (АСМ) была разработана Г. Биннигом и Г. Рорером, которым за эти исследования в 1986 была присуждена Нобелевская премия. Создание атомно-силового микроскопа, способного чувствовать силы притяжения и отталкивания, возникающие между отдельными атомами, дало возможность, наконец, «пощупать и увидеть» нанообъекты.

Рисунок 9. Принцип работы сканирующего зондового микроскопа. Пунктиром показан ход луча лазера. Остальные объяснения в тексте.

Основой АСМ (см. рис. 9) служит зонд, обычно сделанный из кремния и представляющий собой тонкую пластинку-консоль (ее называют кантилевером, от английского слова "cantilever" - консоль, балка). На конце кантилевера (длина  500 мкм, ширина  50 мкм, толщина  1 мкм) расположен очень острый шип (длина  10 мкм, радиус закругления от 1 до 10 нм), оканчивающийся группой из одного или нескольких атомов (см. рис.10).

Рисунок 10. Электронные микрофото одного и того же зонда, сделанные с малым (верх) и большим увеличением.

При перемещении микрозонда вдоль поверхности образца острие шипа приподнимается и опускается, очерчивая микрорельеф поверхности, подобно тому, как скользит по грампластинке патефонная игла. На выступающем конце кантилевера (над шипом, см. рис. 9) расположена зеркальная площадка, на которую падает и от которой отражается луч лазера. Когда шип опускается и поднимается на неровностях поверхности, отраженный луч отклоняется, и это отклонение регистрируется фотодетектором, а сила, с которой шип притягивается к близлежащим атомам – пьезодатчиком.

Данные фотодетектора и пьезодатчика используются в системе обратной связи, которая может обеспечивать, например, постоянную величину силу взаимодействия между микрозондом и поверхностью образца. В результате, можно строить объёмный рельеф поверхности образца в режиме реального времени. Разрешающая способность АСМ метода составляет примерно 0,1-1 нм по горизонтали и 0,01 нм по вертикали. Изображение бактерии кишечной палочки, полученное с помощью сканирующего зондового микроскопа, показано на рис. 11.

Рисунок 11. Бактерия кишечной палочки (Escherichia coli). Изображение получено с помощью сканирующего зондового микроскопа. Длина бактерии – 1,9 мкм, ширина – 1 мкм. Толщина жгутиков и ресничек – 30 нм и 20 нм, соответственно. Автор: Ang Li, National University of Singapore.

Другая группа сканирующих зондовых микроскопов для построения рельефа поверхности использует так называемый квантово-механический «туннельный эффект». Суть туннельного эффекта состоит в том, что электрический ток между острой металлической иглой и поверхностью, расположенной на расстоянии около 1 нм, начинает зависеть от этого расстояния – чем меньше расстояние, тем больше ток. Если между иглой и поверхностью прикладывать напряжение 10 В, то этот «туннельный» ток может составить от 10 рА до 10 нА. Измеряя этот ток и поддерживая его постоянным, можно сохранять постоянным и расстояние между иглой и поверхностью. Это позволяет строить объёмный профиль поверхности (см. рис. 12). В отличие от атомно-силового микроскопа, сканирующий туннельный микроскоп может изучать только поверхности металлов или полупроводников.